Nous effectuons une estimation précise du nombre de spécialisations classiques en poids un d’une famille non-CM de formes modulaires propres ordinaires cuspidales. Nous donnons aussi des exemples où plusieurs familles se spécialisent sur la même forme de poids un.
We give precise estimates for the number of classical weight one specializations of a non-CM family of ordinary cuspidal eigenforms. We also provide examples to show how uniqueness fails with respect to membership of weight one forms in families.
@article{JTNB_2012__24_3_669_0, author = {Dimitrov, Mladen and Ghate, Eknath}, title = {On classical weight one forms in {Hida} families}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {669--690}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {3}, year = {2012}, doi = {10.5802/jtnb.816}, zbl = {1271.11060}, mrnumber = {3010634}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.816/} }
TY - JOUR AU - Dimitrov, Mladen AU - Ghate, Eknath TI - On classical weight one forms in Hida families JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 669 EP - 690 VL - 24 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.816/ DO - 10.5802/jtnb.816 LA - en ID - JTNB_2012__24_3_669_0 ER -
%0 Journal Article %A Dimitrov, Mladen %A Ghate, Eknath %T On classical weight one forms in Hida families %J Journal de théorie des nombres de Bordeaux %D 2012 %P 669-690 %V 24 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.816/ %R 10.5802/jtnb.816 %G en %F JTNB_2012__24_3_669_0
Dimitrov, Mladen; Ghate, Eknath. On classical weight one forms in Hida families. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 3, pp. 669-690. doi : 10.5802/jtnb.816. http://archive.numdam.org/articles/10.5802/jtnb.816/
[BD12] J. Bellaïche and M. Dimitrov, On the Eigencurve at classical weight one points. Preprint (2012).
[BT99] K. Buzzard and R. Taylor, Companion forms and weight forms. Ann. of Math., 149 (1999), 905–919. | MR | Zbl
[B03] K. Buzzard, Analytic continuation of overconvergent eigenforms. J. Amer. Math. Soc., 16 (2003), 29–55. | MR | Zbl
[CV03] S. Cho and V. Vatsal, Deformations of induced Galois representations. J. Reine Angew. Math., 556 (2003), 79–98. | MR | Zbl
[EPW06] M. Emerton, R. Pollack and T. Weston, Variation of Iwasawa invariants in Hida families. Invent. Math., 163 (2006), 523–580. | MR | Zbl
[F02] A. Fischman, On the image of -adic Galois representations. Ann. Inst. Fourier, Grenoble, 52 (2002), no. 2, 351–378. | Numdam | MR | Zbl
[GK12] E. Ghate and N. Kumar, Control theorems for ordinary -adic families of modular forms. In preparation.
[GV04] E. Ghate and V. Vatsal, On the local behaviour of ordinary -adic representations. Ann. Inst. Fourier, Grenoble, 54 (2004), no. 7, 2143–2162. | Numdam | MR | Zbl
[H85] H. Hida, Galois representations into attached to ordinary cusp forms. Invent. Math., 85 (1986), 545–613. | MR | Zbl
[H86] Iwasawa modules attached to congruences of cusp forms. Ann. Sci. Ecole Norm. Sup. (4), 19 (1986), 231–273. | MR
[S77] J-P. Serre, Modular forms of weight one and Galois representations. Proc. Sympos. Univ. Durham, Durham (1975), Academic Press, London, 1977, 193–268. | MR | Zbl
[W88] A. Wiles, On ordinary -adic representations associated to modular forms. Invent. Math., 94 (1988), 529–573. | MR | Zbl
Cité par Sources :