On classical weight one forms in Hida families
Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 3, pp. 669-690.

Nous effectuons une estimation précise du nombre de spécialisations classiques en poids un d’une famille non-CM de formes modulaires propres ordinaires cuspidales. Nous donnons aussi des exemples où plusieurs familles se spécialisent sur la même forme de poids un.

We give precise estimates for the number of classical weight one specializations of a non-CM family of ordinary cuspidal eigenforms. We also provide examples to show how uniqueness fails with respect to membership of weight one forms in families.

DOI : 10.5802/jtnb.816
Classification : 11F80, 11F33, 11R23
Dimitrov, Mladen 1 ; Ghate, Eknath 2

1 Laboratoire Paul Painlevé Université Lille 1, U.F.R. de Mathématiques 59655 Villeneuve d’Ascq cedex, France
2 School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400005, India
@article{JTNB_2012__24_3_669_0,
     author = {Dimitrov, Mladen and Ghate, Eknath},
     title = {On classical weight one forms in {Hida} families},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {669--690},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {24},
     number = {3},
     year = {2012},
     doi = {10.5802/jtnb.816},
     zbl = {1271.11060},
     mrnumber = {3010634},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.816/}
}
TY  - JOUR
AU  - Dimitrov, Mladen
AU  - Ghate, Eknath
TI  - On classical weight one forms in Hida families
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2012
SP  - 669
EP  - 690
VL  - 24
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.816/
DO  - 10.5802/jtnb.816
LA  - en
ID  - JTNB_2012__24_3_669_0
ER  - 
%0 Journal Article
%A Dimitrov, Mladen
%A Ghate, Eknath
%T On classical weight one forms in Hida families
%J Journal de théorie des nombres de Bordeaux
%D 2012
%P 669-690
%V 24
%N 3
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.816/
%R 10.5802/jtnb.816
%G en
%F JTNB_2012__24_3_669_0
Dimitrov, Mladen; Ghate, Eknath. On classical weight one forms in Hida families. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 3, pp. 669-690. doi : 10.5802/jtnb.816. https://www.numdam.org/articles/10.5802/jtnb.816/

[BD12] J. Bellaïche and M. Dimitrov, On the Eigencurve at classical weight one points. Preprint (2012).

[BT99] K. Buzzard and R. Taylor, Companion forms and weight 1 forms. Ann. of Math., 149 (1999), 905–919. | MR | Zbl

[B03] K. Buzzard, Analytic continuation of overconvergent eigenforms. J. Amer. Math. Soc., 16 (2003), 29–55. | MR | Zbl

[CV03] S. Cho and V. Vatsal, Deformations of induced Galois representations. J. Reine Angew. Math., 556 (2003), 79–98. | MR | Zbl

[EPW06] M. Emerton, R. Pollack and T. Weston, Variation of Iwasawa invariants in Hida families. Invent. Math., 163 (2006), 523–580. | MR | Zbl

[F02] A. Fischman, On the image of Λ-adic Galois representations. Ann. Inst. Fourier, Grenoble, 52 (2002), no. 2, 351–378. | Numdam | MR | Zbl

[GK12] E. Ghate and N. Kumar, Control theorems for ordinary 2-adic families of modular forms. In preparation.

[GV04] E. Ghate and V. Vatsal, On the local behaviour of ordinary Λ-adic representations. Ann. Inst. Fourier, Grenoble, 54 (2004), no. 7, 2143–2162. | Numdam | MR | Zbl

[H85] H. Hida, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms. Invent. Math., 85 (1986), 545–613. | MR | Zbl

[H86] Iwasawa modules attached to congruences of cusp forms. Ann. Sci. Ecole Norm. Sup. (4), 19 (1986), 231–273. | MR

[S77] J-P. Serre, Modular forms of weight one and Galois representations. Proc. Sympos. Univ. Durham, Durham (1975), Academic Press, London, 1977, 193–268. | MR | Zbl

[W88] A. Wiles, On ordinary λ-adic representations associated to modular forms. Invent. Math., 94 (1988), 529–573. | MR | Zbl

  • Maksoud, Alexandre Théorie d’Iwasawa des motifs d’Artin et des formes modulaires de poids 1, Annales de l'Institut Fourier (2025), p. 1 | DOI:10.5802/aif.3679
  • Dall'Ava, Luca Approximations of the balanced triple product p-adic L-function, Journal of Number Theory, Volume 246 (2023), p. 189 | DOI:10.1016/j.jnt.2022.11.009
  • Berger, Tobias; Klosin, Krzysztof 𝑅=𝑇 theorems for weight one modular forms, Transactions of the American Mathematical Society (2023) | DOI:10.1090/tran/9001
  • Betina, Adel; Dimitrov, Mladen A geometric view on Iwasawa theory, Journal de Théorie des Nombres de Bordeaux, Volume 33 (2022) no. 3.1, p. 703 | DOI:10.5802/jtnb.1176
  • Hida, Haruzo The universal ordinary deformation ring associated to a real quadratic field, Proceedings - Mathematical Sciences, Volume 132 (2022) no. 1 | DOI:10.1007/s12044-021-00653-4
  • Betina, Adel; Dimitrov, Mladen Geometry of the eigencurve at CM points and trivial zeros of Katz p-adic L-functions, Advances in Mathematics, Volume 384 (2021), p. 107724 | DOI:10.1016/j.aim.2021.107724
  • Betina, Adel Ramification of the Eigencurve at Classical RM Points, Canadian Journal of Mathematics, Volume 72 (2020) no. 1, p. 57 | DOI:10.4153/cjm-2018-029-4
  • Conti, Andrea Galois level and congruence ideal for -adic families of finite slope Siegel modular forms, Compositio Mathematica, Volume 155 (2019) no. 4, p. 776 | DOI:10.1112/s0010437x19007048
  • Sharma, Devika Locally indecomposable Galois representations with full residual image, International Journal of Number Theory, Volume 13 (2017) no. 05, p. 1191 | DOI:10.1142/s1793042117500646
  • Ozawa, Tomomi Classical weight one forms in Hida families: Hilbert modular case, manuscripta mathematica, Volume 153 (2017) no. 3-4, p. 501 | DOI:10.1007/s00229-016-0898-z
  • Bellaïche, Joël; Dimitrov, Mladen On the eigencurve at classical weight 1 points, Duke Mathematical Journal, Volume 165 (2016) no. 2 | DOI:10.1215/00127094-3165755
  • Dimitrov, Mladen On the local structure of ordinary Hecke algebras at classical weight one points, Automorphic Forms and Galois Representations (2014), p. 1 | DOI:10.1017/cbo9781107297524.002
  • Ramakrishna, Ravi Maps to weight space in Hida families, Indian Journal of Pure and Applied Mathematics, Volume 45 (2014) no. 5, p. 759 | DOI:10.1007/s13226-014-0087-2

Cité par 13 documents. Sources : Crossref