Distribution of factorials modulo p
Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 1, pp. 169-177.

We estimate the average number of residue classes missed by the sequence n!(modp) for px.

On s’intéresse à l’estimation du nombre de valeurs prises par la suite n!(modp). Principalement, on obtient en moyenne sur les nombres premiers px, une minoration du nombre de classes modulo p évitées par la suite n!(modp).

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.974
Classification: 11B50, 11B83, 11R09, 11R45
Keywords: Distribution of sequences mod $p$, polynomials, density results.
Klurman, Oleksiy 1; Munsch, Marc 2

1 Départment de Mathématiques et de Statistique Université de Montréal, CP 6128 succ. Centre-Ville Montréal QC H3C 3J7, Canada
2 CRM, Université de Montréal 5357 Montréal, Québec, Canada
@article{JTNB_2017__29_1_169_0,
     author = {Klurman, Oleksiy and Munsch, Marc},
     title = {Distribution of factorials modulo $p$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {169--177},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {1},
     year = {2017},
     doi = {10.5802/jtnb.974},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.974/}
}
TY  - JOUR
AU  - Klurman, Oleksiy
AU  - Munsch, Marc
TI  - Distribution of factorials modulo $p$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2017
SP  - 169
EP  - 177
VL  - 29
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://archive.numdam.org/articles/10.5802/jtnb.974/
DO  - 10.5802/jtnb.974
LA  - en
ID  - JTNB_2017__29_1_169_0
ER  - 
%0 Journal Article
%A Klurman, Oleksiy
%A Munsch, Marc
%T Distribution of factorials modulo $p$
%J Journal de théorie des nombres de Bordeaux
%D 2017
%P 169-177
%V 29
%N 1
%I Société Arithmétique de Bordeaux
%U http://archive.numdam.org/articles/10.5802/jtnb.974/
%R 10.5802/jtnb.974
%G en
%F JTNB_2017__29_1_169_0
Klurman, Oleksiy; Munsch, Marc. Distribution of factorials modulo $p$. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 1, pp. 169-177. doi : 10.5802/jtnb.974. http://archive.numdam.org/articles/10.5802/jtnb.974/

[1] Banks, William D.; Luca, Florian; Shparlinski, Igor E.; Stichtenoth, Henning On the value set of n! modulo a prime, Turkish J. Math., Volume 29 (2005) no. 2, pp. 169-174

[2] Broughan, Kevin A.; Barnett, A. Ross On the missing values of n!modp, J. Ramanujan Math. Soc., Volume 24 (2009) no. 3, pp. 277-284

[3] Cameron, Peter J.; Cohen, Arjeh M. On the number of fixed point free elements in a permutation group, Discrete Math., Volume 106/107 (1992), pp. 135-138 (A collection of contributions in honour of Jack van Lint) | DOI

[4] Cobeli, Cristian; Vâjâitu, Marian; Zaharescu, Alexandru The sequence n!(modp), J. Ramanujan Math. Soc., Volume 15 (2000) no. 2, pp. 135-154

[5] Garaev, Moubariz Z.; Hernández, J. A note on n! modulo p (To appear in Monatschefte für Mathematic, http://arxiv.org/abs/1505.05912)

[6] Garaev, Moubariz Z.; Luca, Florian Character sums and products of factorials modulo p, J. Théor. Nombres Bordeaux, Volume 17 (2005) no. 1, pp. 151-160 | DOI

[7] Garaev, Moubariz Z.; Luca, Florian; Shparlinski, Igor E. Character sums and congruences with n!, Trans. Amer. Math. Soc., Volume 356 (2004) no. 12, p. 5089-5102 (electronic) | DOI

[8] Garaev, Moubariz Z.; Luca, Florian; Shparlinski, Igor E. Exponential sums and congruences with factorials, J. Reine Angew. Math., Volume 584 (2005), pp. 29-44 | DOI

[9] Guy, Richard K. Unsolved problems in number theory, Unsolved Problems in Intuitive Mathematics, 1, Springer-Verlag, New York-Berlin, 1981, xviii+161 pages

[10] Iwaniec, Henryk; Kowalski, Emmanuel Analytic number theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, 2004, xi+615 pages

[11] Klurman, Oleksiy; Munsch, Marc Distribution of factorials modulo p (Preprint, http://arxiv.org/abs/1505.01198)

[12] Lagarias, Jeffrey C.; Montgomery, Hugh L.; Odlyzko, Andrew M. A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math., Volume 54 (1979) no. 3, pp. 271-296 | DOI

[13] Lagarias, Jeffrey C.; Odlyzko, Andrew M. Effective versions of the Chebotarev density theorem, Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London (1977), pp. 409-464

[14] Lev, Vsevolod F. Permutations in abelian groups and the sequence n!(modp), European J. Combin., Volume 27 (2006) no. 5, pp. 635-643 | DOI

[15] Pólya, George; Szegő, Gábor Problems and theorems in analysis. Vol. II: Theory of functions, zeros, polynomials, determinants, number theory, geometry, Die Grundlehren der mathematischen Wissenschaften, 216, Springer-Verlag, 1976, xi+391 pages

[16] Rokowska, Barbara; Schinzel, Andrzej Sur un problème de M. Erdős, Elem. Math., Volume 15 (1960), pp. 84-85

[17] Stark, Harold M. Some effective cases of the Brauer-Siegel theorem, Invent. Math., Volume 23 (1974), pp. 135-152 | DOI

[18] Trudgian, Tim There are no socialist primes less than 10 9 , Integers, Volume 14 (2014), Paper No. A63, 4 pages

Cited by Sources: