We consider steady flows of ideal incompressible fluids in two-dimensional domains. These flows solve the Euler equations with tangential boundary conditions. If such a flow has no stagnation point in the domain or at infinity, in the sense that the infimum of its norm over the domain is positive, then it inherits the geometric properties of the domain, for some simple classes of domains. Namely, if the domain is a strip or a half-plane, then such a flow turns out to be parallel to the boundary of the domain. If the domain is the plane, the flow is then a parallel flow, that is, its trajectories are parallel lines. If the domain is an annulus, then the flow is circular, that is, the streamlines are concentric circles. The results are based on qualitative properties and classification results for some semilinear elliptic equations satisfied by the stream function.
@article{SLSEDP_2017-2018____A5_0, author = {Hamel, Fran\c{c}ois and Nadirashvili, Nikolai}, title = {Parallel and circular flows for the two-dimensional {Euler} equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:5}, pages = {1--13}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2017-2018}, doi = {10.5802/slsedp.119}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/slsedp.119/} }
TY - JOUR AU - Hamel, François AU - Nadirashvili, Nikolai TI - Parallel and circular flows for the two-dimensional Euler equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:5 PY - 2017-2018 SP - 1 EP - 13 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/articles/10.5802/slsedp.119/ DO - 10.5802/slsedp.119 LA - en ID - SLSEDP_2017-2018____A5_0 ER -
%0 Journal Article %A Hamel, François %A Nadirashvili, Nikolai %T Parallel and circular flows for the two-dimensional Euler equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:5 %D 2017-2018 %P 1-13 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/articles/10.5802/slsedp.119/ %R 10.5802/slsedp.119 %G en %F SLSEDP_2017-2018____A5_0
Hamel, François; Nadirashvili, Nikolai. Parallel and circular flows for the two-dimensional Euler equations. Séminaire Laurent Schwartz — EDP et applications (2017-2018), Talk no. 5, 13 p. doi : 10.5802/slsedp.119. http://archive.numdam.org/articles/10.5802/slsedp.119/
[1] G. Alberti, L. Ambrosio, X. Cabré, On a long-standing conjecture of E. De Giorgi: old and recent results, Acta Appl. Math. 65 (2001), 9-33. | DOI | Zbl
[2] L. Ambrosio, X. Cabré, Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), 725-739. | DOI | Zbl
[3] H. Berestycki, L. Caffarelli, L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1997), 69-94. | Numdam | Zbl
[4] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. 22 (1991), 1-37. | DOI | MR | Zbl
[5] A. Choffrut, V. Šverák, Local structure of the set of steady-state solutions to the 2D incompressible Euler equations, Geom. Funct. Anal. 22 (2012), 136-201. | DOI | MR | Zbl
[6] E. De Giorgi, Convergence problems for functionals and operators, In: Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, Pitagora, 1979, 131-188.
[7] M. Del Pino, M. Kowalczyk, J. Wei, On the De Giorgi conjecture in dimension , Ann. Math. 174 (2011), 1485-1569. | DOI | MR | Zbl
[8] A. Farina, Liouville-type theorems for elliptic equations, Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4, M. Chipot ed., 2007, Elsevier, 61-116. | DOI | Zbl
[9] A. Farina, E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, In: Recent progress on reaction-diffusion systems and viscosity solutions, World Sci. Publ., Hackensack, NJ, 2009, 74-96. | DOI | Zbl
[10] A. Farina, E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal. 195 (2010), 1025-1058. | DOI | MR | Zbl
[11] N. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), 481-491. | DOI | MR | Zbl
[12] L.E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Univ. Press, 2000. | DOI | Zbl
[13] B. Gidas, W.N. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. | DOI | MR | Zbl
[14] F. Hamel, N. Nadirashvili, Shear flows of an ideal fluid and elliptic equations in unbounded domains, Comm. Pure Appl. Math. 70 (2017), 590-608. | DOI | MR | Zbl
[15] F. Hamel, N. Nadirashvili, A Liouville theorem for the Euler equations in the plane, preprint . | DOI | HAL | MR | Zbl
[16] F. Hamel, N. Nadirashvili, Circular flows for the Euler equations in two-dimensional annular domains, in preparation.
[17] H. Koch, N. Nadirashvili, Partial analyticity and nodal sets for nonlinear elliptic systems, . | arXiv
[18] G. Koch, N. Nadirashvili, G.A. Seregin, V. Šverák, Liouville theorems for the Navier-Stokes equations and applications, Acta Math. 203 (2009), 83-105. | DOI | MR | Zbl
[19] J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. | DOI | MR | Zbl
[20] O. Savin, Regularity of flat level sets in phase transitions, Ann. Math. 169 (2009), 41-78. | DOI | MR | Zbl
Cited by Sources: