Bérenger/Maxwell with Discontinous Absorptions : Existence, Perfection, and No Loss
Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exposé no. 10, 20 p.

We analyse Bérenger’s split algorithm applied to the system version of the two dimensional wave equation with absorptions equal to Heaviside functions of x j , j=1,2. The methods form the core of the analysis [11] for three dimensional Maxwell equations with absorptions not necessarily piecewise constant. The split problem is well posed, has no loss of derivatives (for divergence free data in the case of Maxwell), and is perfectly matched.

@article{SLSEDP_2012-2013____A10_0,
     author = {Halpern, Laurence and Rauch, Jeffrey},
     title = {B\'erenger/Maxwell with Discontinous Absorptions~: Existence, Perfection, and No Loss},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:10},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2012-2013},
     doi = {10.5802/slsedp.38},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.38/}
}
Halpern, Laurence; Rauch, Jeffrey. Bérenger/Maxwell with Discontinous Absorptions : Existence, Perfection, and No Loss. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exposé no. 10, 20 p. doi : 10.5802/slsedp.38. http://archive.numdam.org/articles/10.5802/slsedp.38/

[1] S. Abarbanel, and D. Gottlieb, A mathematical analysis of the PML method, J. Comput. Phys., 134, 357-363, 1997. | MR 1458833 | Zbl 0887.65122

[2] D. Appelo, T. Hagstrom, and G. Kreiss, Perfectly matched layers for hyperbolic systems: General formulation, well-posedness and stability , SIAM J. Appl. Math., 67, no. 1, 1–23, 2007. | MR 2272612 | Zbl 1110.35042

[3] A. Bamberger, P. Joly, J.E. Roberts, Second order absorbing boundary conditions for the wave equation: a solution for the corner problem, INRIA Report RR-0644, 1987. | MR 902872 | Zbl 0716.35036

[4] E. Bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, J. Comput. Phys., 188, 399-433, 2003. | MR 1985305 | Zbl 1127.74335

[5] E. Bécache. and P. Joly, On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations, M2AN Math. Model. Numer. Anal., 36, 87-119, 2002. | Numdam | MR 1916294 | Zbl 0992.78032

[6] J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves , J. Comput. Phys., 114, 185-200 , 1994. | MR 1294924 | Zbl 0814.65129

[7] J.-P. Bérenger, Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 127, 363-379, 1996. | MR 1412240 | Zbl 0862.65080

[8] J.-P. Bérenger, Perfectly matched layers (PML) for computational electromagnetics, Synthesis lectures on computational electromagnetics, Morgan and Claypool, 2007.

[9] J. Diaz and P. Joly, A time domain analysis of PML models in acoustics, Computer Methods in Applied Mechanics and Engineering 195, 29-32, 3820-3853, 2006. | MR 2221776 | Zbl 1119.76046

[10] L. Halpern, S. Petit-Bergez, and J. Rauch The analysis of matched layers, Confluentes Math., 3 no. 2, 159-236, 2011. | MR 2807107

[11] L. Halpern and J. Rauch, in preparation.

[12] P. Joly, S. Lohrengel, O. Vacus, Un résultat d’existence et d’unicité pour l’équation de Helmholtz avec conditions aux limites absorbantes d’ordre 2, C. R. Acad. Sci. Paris Sér. 1 Math. 329 (3) (1999) 193-198. | MR 1711059 | Zbl 0929.35031

[13] J. Métral, and O. Vacus, Caractère bien posé du problème de Cauchy pour le système de Bérenger, C. R. Acad. Sci. Paris Sér. I Math., 10, 847–852, 1999. | Zbl 0928.35176

[14] S. Petit-Bergez, Problèmes faiblement bien posés : discrétisation et applications, Thèse de l’Université Paris 13, 2006.