High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations
The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 161-199.

Multiresolution provides a fundamental tool based on the wavelet theory to build adaptive numerical schemes for Partial Differential Equations and time-adaptive meshes, allowing for error control. We have previously introduced this strategy to construct adaptive lattice Boltzmann methods with this interesting feature. Furthermore, these schemes allow for an effective memory compression of the solution when spatially localized phenomena (such as shocks or fronts) are involved, to rely on the original scheme without any manipulation at the finest level of grid and to reach a high level of accuracy on the solution. Nevertheless, the peculiar way of modeling the desired physical phenomena in the lattice Boltzmann schemes calls, besides the possibility of controlling the error introduced by the mesh adaptation, for a deeper and more precise understanding of how mesh adaptation alters the target equations describing the physics. In this contribution, this issue is studied by performing the equivalent equations analysis of the adaptive method after writing the scheme under an adapted formalism. It provides an essential tool to master the perturbations introduced by the adaptive numerical strategy, which can thus be devised to preserve the desired features of the reference scheme at a high order of accuracy. The theoretical considerations are corroborated by numerical experiments in both the 1D and 2D context, showing the relevance of the analysis. In particular, we show that our numerical method outperforms traditional approaches, whether or not the solution of the reference scheme converges to the solution of the target equation. Furthermore, we discuss the influence of various collision strategies for non-linear problems, showing that they have only a marginal impact on the quality of the solution, thus further assessing the proposed strategy.

Publié le :
DOI : 10.5802/smai-jcm.83
Classification : 65M99, 65M50, 76M28
Mots clés : lattice Boltzmann method, adaptive mesh refinement, multiresolution analysis, equivalent equations
Bellotti, Thomas 1 ; Gouarin, Loïc 1 ; Graille, Benjamin 2 ; Massot, Marc 1

1 CMAP, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France.
2 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France.
@article{SMAI-JCM_2022__8__161_0,
     author = {Bellotti, Thomas and Gouarin, Lo{\"\i}c and Graille, Benjamin and Massot, Marc},
     title = {High accuracy analysis of adaptive multiresolution-based lattice {Boltzmann} schemes via the equivalent equations},
     journal = {The SMAI Journal of computational mathematics},
     pages = {161--199},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.83},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/smai-jcm.83/}
}
TY  - JOUR
AU  - Bellotti, Thomas
AU  - Gouarin, Loïc
AU  - Graille, Benjamin
AU  - Massot, Marc
TI  - High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 161
EP  - 199
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://archive.numdam.org/articles/10.5802/smai-jcm.83/
DO  - 10.5802/smai-jcm.83
LA  - en
ID  - SMAI-JCM_2022__8__161_0
ER  - 
%0 Journal Article
%A Bellotti, Thomas
%A Gouarin, Loïc
%A Graille, Benjamin
%A Massot, Marc
%T High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations
%J The SMAI Journal of computational mathematics
%D 2022
%P 161-199
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U http://archive.numdam.org/articles/10.5802/smai-jcm.83/
%R 10.5802/smai-jcm.83
%G en
%F SMAI-JCM_2022__8__161_0
Bellotti, Thomas; Gouarin, Loïc; Graille, Benjamin; Massot, Marc. High accuracy analysis of adaptive multiresolution-based lattice Boltzmann schemes via the equivalent equations. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 161-199. doi : 10.5802/smai-jcm.83. http://archive.numdam.org/articles/10.5802/smai-jcm.83/

[1] Abramowitz, Milton; Stegun, Irene A. Handbook of mathematical functions with formulas, graphs, and mathematical tables, 55, US Government printing office, 1964

[2] Bellotti, Thomas; Gouarin, Loïc; Graille, Benjamin; Massot, Marc Does the multiresolution lattice Boltzmann method allow to deal with waves passing through mesh jumps? (2021) (To appear in C. R. Math. Acad. Sci. Paris, https://hal.archives-ouvertes.fr/hal-03235133, https://arxiv.org/abs/2105.13816)

[3] Bellotti, Thomas; Gouarin, Loïc; Graille, Benjamin; Massot, Marc Multidimensional fully adaptive lattice Boltzmann methods with error control based on multiresolution analysis (2021) (To appear in J. Comput. Phys., https://hal.archives-ouvertes.fr/hal-03158073, https://arxiv.org/abs/2103.02903)

[4] Bellotti, Thomas; Gouarin, Loïc; Graille, Benjamin; Massot, Marc Multiresolution-based mesh adaptation and error control for lattice Boltzmann methods with applications to hyperbolic conservation laws, SIAM J. Sci. Comput., Volume 44 (2022) no. 4, p. A2599-A2627

[5] Bihari, Barna L.; Harten, Ami Multiresolution schemes for the numerical solution of 2-D conservation laws I, SIAM J. Sci. Comput., Volume 18 (1997) no. 2, pp. 315-354 | DOI | MR | Zbl

[6] Boghosian, Bruce; Dubois, François; Graille, Benjamin; Lallemand, Pierre; Tekitek, Mohamed-Mahdi Curious Convergence Properties of Lattice Boltzmann Schemes for Diffusion with Acoustic Scaling, Commun. Comput. Phys., Volume 23 (2018) no. 4, pp. 1263-1278 | arXiv | MR | Zbl

[7] Caetano, Filipa; Dubois, François; Graille, Benjamin A result of convergence for a mono-dimensional two-velocities lattice Boltzmann scheme (2019) (https://arxiv.org/abs/1905.12393)

[8] Chapman, Sydney; Cowling, Thomas George; Burnett, David The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, Cambridge University Press, 1990

[9] Cohen, Albert; Kaber, Sidi; Müller, Siegfried; Postel, Marie Fully adaptive multiresolution finite volume schemes for conservation laws, Math. Comput., Volume 72 (2003) no. 241, pp. 183-225 | DOI | MR | Zbl

[10] Colella, Phillip Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., Volume 87 (1990) no. 1, pp. 171-200 | DOI | MR | Zbl

[11] Dellacherie, Stéphane Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation, Acta Appl. Math., Volume 131 (2014) no. 1, pp. 69-140 | DOI | MR | Zbl

[12] DeVore, Ronald A.; Sharpley, Robert C. Maximal functions measuring smoothness, 293, American Mathematical Society, 1984

[13] Dubois, François Equivalent partial differential equations of a lattice Boltzmann scheme, Comput. Math. Appl., Volume 55 (2008) no. 7, pp. 1441-1449 | DOI | MR | Zbl

[14] Dubois, François Stable lattice Boltzmann schemes with a dual entropy approach for monodimensional nonlinear waves, Comput. Math. Appl., Volume 65 (2013) no. 2, pp. 142-159 | DOI | MR | Zbl

[15] Dubois, François Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes, Asymptotic Anal. (2019), pp. 1-41 (To appear)

[16] Dupuis, Alexandre; Chopard, Bastien Theory and applications of an alternative lattice Boltzmann grid refinement algorithm, Phys. Rev. E, Volume 67 (2003) no. 6, p. 066707 | DOI

[17] Eitel-Amor, Georg; Meinke, Matthias; Schröder, Wolfgang A lattice-Boltzmann method with hierarchically refined meshes, Computers & Fluids, Volume 75 (2013), pp. 127-139 | DOI | Zbl

[18] Fakhari, Abbas; Geier, Martin; Lee, Taehun A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows, J. Comput. Phys., Volume 315 (2016), pp. 434-457 | DOI | MR | Zbl

[19] Fakhari, Abbas; Lee, Taehun Finite-difference lattice Boltzmann method with a block-structured adaptive-mesh-refinement technique, Phys. Rev. E, Volume 89 (2014) no. 3, p. 033310 | DOI

[20] Fakhari, Abbas; Lee, Taehun Numerics of the lattice Boltzmann method on nonuniform grids: standard LBM and finite-difference LBM, Computers & Fluids, Volume 107 (2015), pp. 205-213 | DOI | MR | Zbl

[21] Filippova, Olga; Hänel, Dieter Grid refinement for lattice-BGK models, J. Comput. Phys., Volume 147 (1998) no. 1, pp. 219-228 | DOI | Zbl

[22] Graille, Benjamin Approximation of mono-dimensional hyperbolic systems: A lattice Boltzmann scheme as a relaxation method, J. Comput. Phys., Volume 266 (2014), pp. 74-88 | DOI | MR | Zbl

[23] Hovhannisyan, Nune; Müller, Siegfried On the stability of fully adaptive multiscale schemes for conservation laws using approximate flux and source reconstruction strategies, IMA J. Numer. Anal., Volume 30 (2010) no. 4, pp. 1256-1295 | DOI | MR | Zbl

[24] Krüger, Timm; Kusumaatmaja, Halim; Kuzmin, Alexandr; Shardt, Orest; Silva, Goncalo; Viggen, Erlend Magnus The lattice Boltzmann method, Springer International Publishing, Volume 10 (2017) no. 978-3, pp. 4-15 | Zbl

[25] Lallemand, Pierre; Luo, Li-Shi Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, Volume 61 (2000) no. 6, p. 6546 | DOI | MR

[26] Landajuela, Mikel Burgers equation, BCAM Internship report: Basque Center for Applied Mathematics (2011)

[27] LeVeque, Randall Finite volume methods for hyperbolic problems, 31, Cambridge University Press, 2002 | DOI

[28] N’Guessan, Marc-Arthur; Massot, Marc; Séries, Laurent; Tenaud, Christian High order time integration and mesh adaptation with error control for incompressible Navier–Stokes and scalar transport resolution on dual grids, J. Comput. Appl. Math., Volume 387 (2021), p. 112542 | DOI | MR | Zbl

[29] Rohde, Martin; Kandhai, Drona; Derksen, Jacobus; Van den Akker, Harry E. A. A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes, Int. J. Numer. Methods Fluids, Volume 51 (2006) no. 4, pp. 439-468 | DOI | MR | Zbl

Cité par Sources :