In this study, a new
Mots-clés : incompressible (Navier–)Stokes equations, Brinkman equations, inf-sup condition, discrete Korn’s inequality, strictly conservative scheme, pressure-robust discretization
@article{SMAI-JCM_2022__8__225_0, author = {Zeng, Huilan and Zhang, Chen-Song and Zhang, Shuo}, title = {A low-degree strictly conservative finite element method for incompressible flows on general triangulations}, journal = {The SMAI Journal of computational mathematics}, pages = {225--248}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {8}, year = {2022}, doi = {10.5802/smai-jcm.85}, language = {en}, url = {https://www.numdam.org/articles/10.5802/smai-jcm.85/} }
TY - JOUR AU - Zeng, Huilan AU - Zhang, Chen-Song AU - Zhang, Shuo TI - A low-degree strictly conservative finite element method for incompressible flows on general triangulations JO - The SMAI Journal of computational mathematics PY - 2022 SP - 225 EP - 248 VL - 8 PB - Société de Mathématiques Appliquées et Industrielles UR - https://www.numdam.org/articles/10.5802/smai-jcm.85/ DO - 10.5802/smai-jcm.85 LA - en ID - SMAI-JCM_2022__8__225_0 ER -
%0 Journal Article %A Zeng, Huilan %A Zhang, Chen-Song %A Zhang, Shuo %T A low-degree strictly conservative finite element method for incompressible flows on general triangulations %J The SMAI Journal of computational mathematics %D 2022 %P 225-248 %V 8 %I Société de Mathématiques Appliquées et Industrielles %U https://www.numdam.org/articles/10.5802/smai-jcm.85/ %R 10.5802/smai-jcm.85 %G en %F SMAI-JCM_2022__8__225_0
Zeng, Huilan; Zhang, Chen-Song; Zhang, Shuo. A low-degree strictly conservative finite element method for incompressible flows on general triangulations. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 225-248. doi : 10.5802/smai-jcm.85. https://www.numdam.org/articles/10.5802/smai-jcm.85/
[1] Quadratic velocity/linear pressure Stokes elements, Advances in Computer Methods for Partial Differential Equations VII, IMACS, 1992, pp. 28-34
[2] The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 5-8, pp. 314-323 | DOI | MR | Zbl
[3] Approximation of incompressible large deformation elastic problems: some unresolved issues, Comput. Mech., Volume 52 (2013) no. 5, pp. 1153-1167 | DOI | MR | Zbl
[4] A simple preconditioner for a discontinuous Galerkin method for the Stokes problem, J. Sci. Comput., Volume 58 (2014) no. 3, pp. 517-547 | DOI | MR | Zbl
[5] Analysis of some finite elements for the Stokes problem, Math. Comput., Volume 44 (1985), pp. 71-79 | DOI | MR | Zbl
[6] The mathematical theory of finite element methods, Texts in Applied Mathematics, 15, Springer, 2002 | DOI
[7] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Franc. Automat. Inform. Rech. Operat., Volume 8 (1974) no. R-2, pp. 129-151 | Numdam | MR | Zbl
[8] Recent results on mixed finite element methods for second order elliptic problems, Vistas in applied mathematics, Optimization Software; Springer, 1986, pp. 25-43
[9] Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer, 1991 | DOI
[10] The 2D lid-driven cavity problem revisited, Comput. Fluids, Volume 35 (2006) no. 3, pp. 326-348 | DOI | Zbl
[11] Uniformly convergent
[12] The finite element method for elliptic problems, Studies in Mathematics and its Applications, 4, North-Holland, 1978 | Numdam
[13] Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Franc. Automat. Inform. Rech. Operat., Volume 7 (1973) no. R-3, pp. 33-75 | Numdam | MR
[14] On the static deformation of an earth model with a fluid core, Geophys. J. R. Astron. Soc., Volume 36 (1974) no. 2, pp. 461-485 | DOI
[15] Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM J. Numer. Anal., Volume 51 (2013) no. 2, pp. 1308-1326 | DOI | MR | Zbl
[16] An analysis of the convergence of mixed finite element methods, RAIRO, Anal. Numér., Volume 11 (1977) no. 4, pp. 341-354 | DOI | Numdam | MR | Zbl
[17] On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond, SMAI J. Comput. Math., Volume 5 (2019), pp. 89-129 | DOI | Numdam | MR | Zbl
[18] Finite element methods for Navier–Stokes equations, Springer Series in Computational Mathematics, 5, Springer, 1986 | DOI
[19] Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal., Volume 34 (2013) no. 4, pp. 1489-1508 | DOI | MR | Zbl
[20] Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comput., Volume 83 (2014) no. 285, pp. 15-36 | DOI | MR | Zbl
[21] Inf-sup stable finite elements on barycentric refinements producing divergence-free approximations in arbitrary dimensions, SIAM J. Numer. Anal., Volume 56 (2018) no. 5, pp. 2826-2844 | DOI | MR | Zbl
[22] A fully divergence-free finite element method for magnetohydrodynamic equations, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 4, pp. 1-37 | MR | Zbl
[23] A unified study of continuous and discontinuous Galerkin methods, Sci. China, Math., Volume 62 (2019) no. 1, pp. 1-32 | DOI | MR | Zbl
[24] Stable finite element methods preserving
[25] Structure-preserving finite element methods for stationary MHD models, Math. Comput., Volume 88 (2019) no. 316, pp. 553-581 | MR | Zbl
[26] A lowest order divergence-free finite element on rectangular grids, Front. Math. China, Volume 6 (2011) no. 2, pp. 253-270 | DOI | MR | Zbl
[27] On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., Volume 59 (2017) no. 3, pp. 492-544 | DOI | MR | Zbl
[28] A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal., Volume 32 (2012) no. 4, pp. 1484-1508 | DOI | MR | Zbl
[29] A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Eng., Volume 124 (1995) no. 3, pp. 195-212 | DOI | MR | Zbl
[30] Well-balanced discretisation for the compressible Stokes problem by gradient-robustness, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Springer Proceedings in Mathematics & Statistics), Volume 323, Springer, 2020, pp. 113-121 | DOI | MR | Zbl
[31] Pressure-induced locking in mixed methods for time-dependent (Navier–) Stokes equations, J. Comput. Phys., Volume 388 (2019), pp. 350-356 | DOI | MR | Zbl
[32] A robust finite element method for Darcy–Stokes flow, SIAM J. Numer. Anal., Volume 40 (2002) no. 5, pp. 1605-1631 | DOI | MR | Zbl
[33] Stokes elements on cubic meshes yielding divergence-free approximations, Calcolo, Volume 53 (2016) no. 3, pp. 263-283 | DOI | MR
[34] Stability and approximability of the
[35] Divergence-free
[36] Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO, Modélisation Math. Anal. Numér., Volume 19 (1985) no. 1, pp. 111-143 | DOI | Numdam | MR | Zbl
[37] A technique for analysing finite element methods for viscous incompressible flow, Int. J. Numer. Methods Fluids, Volume 11 (1990) no. 6, pp. 935-948 | DOI | MR | Zbl
[38] A discrete de Rham complex with enhanced smoothness, Calcolo, Volume 43 (2006) no. 4, pp. 287-306 | MR | Zbl
[39] A viscosity-independent error estimate of a pressure-stabilized Lagrange-Galerkin scheme for the Oseen problem, J. Sci. Comput., Volume 80 (2019) no. 2, pp. 834-858 | DOI | MR | Zbl
[40] Uniformly stable finite element methods for Darcy–Stokes–Brinkman models, J. Comput. Math., Volume 26 (2008) no. 3, pp. 437-455 | MR
[41] Iterative methods by space decomposition and subspace correction, SIAM Rev., Volume 34 (1992) no. 4, pp. 581-613 | MR | Zbl
[42] A new divergence-free interpolation operator with applications to the Darcy–Stokes–Brinkman equations, SIAM J. Sci. Comput., Volume 32 (2010) no. 2, pp. 855-874 | MR | Zbl
[43] A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comput., Volume 74 (2005) no. 250, pp. 543-554 | DOI | MR | Zbl
[44] On the
[45] Divergence-free finite elements on tetrahedral grids for
[46] Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids, Calcolo, Volume 48 (2011) no. 3, pp. 211-244 | DOI | MR | Zbl
[47] A family of
Cité par Sources :