In this study, a new finite element pair is proposed for incompressible fluid. For this pair, the discrete inf-sup condition and the discrete Korn’s inequality hold for general triangulations. It yields strictly conservative velocity approximations when applied to models of incompressible flows. The convergence rate of the scheme can only be proved to be of suboptimal order, though, based on the property of strict conservation, the robust capacity of the pair for incompressible flows is verified theoretically and numerically.
Mots clés : incompressible (Navier–)Stokes equations, Brinkman equations, inf-sup condition, discrete Korn’s inequality, strictly conservative scheme, pressure-robust discretization
@article{SMAI-JCM_2022__8__225_0, author = {Zeng, Huilan and Zhang, Chen-Song and Zhang, Shuo}, title = {A low-degree strictly conservative finite element method for incompressible flows on general triangulations}, journal = {The SMAI Journal of computational mathematics}, pages = {225--248}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {8}, year = {2022}, doi = {10.5802/smai-jcm.85}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/smai-jcm.85/} }
TY - JOUR AU - Zeng, Huilan AU - Zhang, Chen-Song AU - Zhang, Shuo TI - A low-degree strictly conservative finite element method for incompressible flows on general triangulations JO - The SMAI Journal of computational mathematics PY - 2022 SP - 225 EP - 248 VL - 8 PB - Société de Mathématiques Appliquées et Industrielles UR - http://archive.numdam.org/articles/10.5802/smai-jcm.85/ DO - 10.5802/smai-jcm.85 LA - en ID - SMAI-JCM_2022__8__225_0 ER -
%0 Journal Article %A Zeng, Huilan %A Zhang, Chen-Song %A Zhang, Shuo %T A low-degree strictly conservative finite element method for incompressible flows on general triangulations %J The SMAI Journal of computational mathematics %D 2022 %P 225-248 %V 8 %I Société de Mathématiques Appliquées et Industrielles %U http://archive.numdam.org/articles/10.5802/smai-jcm.85/ %R 10.5802/smai-jcm.85 %G en %F SMAI-JCM_2022__8__225_0
Zeng, Huilan; Zhang, Chen-Song; Zhang, Shuo. A low-degree strictly conservative finite element method for incompressible flows on general triangulations. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 225-248. doi : 10.5802/smai-jcm.85. http://archive.numdam.org/articles/10.5802/smai-jcm.85/
[1] Quadratic velocity/linear pressure Stokes elements, Advances in Computer Methods for Partial Differential Equations VII, IMACS, 1992, pp. 28-34
[2] The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 5-8, pp. 314-323 | DOI | MR | Zbl
[3] Approximation of incompressible large deformation elastic problems: some unresolved issues, Comput. Mech., Volume 52 (2013) no. 5, pp. 1153-1167 | DOI | MR | Zbl
[4] A simple preconditioner for a discontinuous Galerkin method for the Stokes problem, J. Sci. Comput., Volume 58 (2014) no. 3, pp. 517-547 | DOI | MR | Zbl
[5] Analysis of some finite elements for the Stokes problem, Math. Comput., Volume 44 (1985), pp. 71-79 | DOI | MR | Zbl
[6] The mathematical theory of finite element methods, Texts in Applied Mathematics, 15, Springer, 2002 | DOI
[7] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Franc. Automat. Inform. Rech. Operat., Volume 8 (1974) no. R-2, pp. 129-151 | Numdam | MR | Zbl
[8] Recent results on mixed finite element methods for second order elliptic problems, Vistas in applied mathematics, Optimization Software; Springer, 1986, pp. 25-43
[9] Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer, 1991 | DOI
[10] The 2D lid-driven cavity problem revisited, Comput. Fluids, Volume 35 (2006) no. 3, pp. 326-348 | DOI | Zbl
[11] Uniformly convergent -conforming rectangular elements for Darcy–Stokes problem, Sci. China, Math., Volume 56 (2013) no. 12, pp. 2723-2736 | DOI | MR | Zbl
[12] The finite element method for elliptic problems, Studies in Mathematics and its Applications, 4, North-Holland, 1978 | Numdam
[13] Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Franc. Automat. Inform. Rech. Operat., Volume 7 (1973) no. R-3, pp. 33-75 | Numdam | MR
[14] On the static deformation of an earth model with a fluid core, Geophys. J. R. Astron. Soc., Volume 36 (1974) no. 2, pp. 461-485 | DOI
[15] Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM J. Numer. Anal., Volume 51 (2013) no. 2, pp. 1308-1326 | DOI | MR | Zbl
[16] An analysis of the convergence of mixed finite element methods, RAIRO, Anal. Numér., Volume 11 (1977) no. 4, pp. 341-354 | DOI | Numdam | MR | Zbl
[17] On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond, SMAI J. Comput. Math., Volume 5 (2019), pp. 89-129 | DOI | Numdam | MR | Zbl
[18] Finite element methods for Navier–Stokes equations, Springer Series in Computational Mathematics, 5, Springer, 1986 | DOI
[19] Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal., Volume 34 (2013) no. 4, pp. 1489-1508 | DOI | MR | Zbl
[20] Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comput., Volume 83 (2014) no. 285, pp. 15-36 | DOI | MR | Zbl
[21] Inf-sup stable finite elements on barycentric refinements producing divergence-free approximations in arbitrary dimensions, SIAM J. Numer. Anal., Volume 56 (2018) no. 5, pp. 2826-2844 | DOI | MR | Zbl
[22] A fully divergence-free finite element method for magnetohydrodynamic equations, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 4, pp. 1-37 | MR | Zbl
[23] A unified study of continuous and discontinuous Galerkin methods, Sci. China, Math., Volume 62 (2019) no. 1, pp. 1-32 | DOI | MR | Zbl
[24] Stable finite element methods preserving exactly for MHD models, Numer. Math., Volume 135 (2017) no. 2, pp. 371-396 | MR
[25] Structure-preserving finite element methods for stationary MHD models, Math. Comput., Volume 88 (2019) no. 316, pp. 553-581 | MR | Zbl
[26] A lowest order divergence-free finite element on rectangular grids, Front. Math. China, Volume 6 (2011) no. 2, pp. 253-270 | DOI | MR | Zbl
[27] On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., Volume 59 (2017) no. 3, pp. 492-544 | DOI | MR | Zbl
[28] A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal., Volume 32 (2012) no. 4, pp. 1484-1508 | DOI | MR | Zbl
[29] A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Eng., Volume 124 (1995) no. 3, pp. 195-212 | DOI | MR | Zbl
[30] Well-balanced discretisation for the compressible Stokes problem by gradient-robustness, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Springer Proceedings in Mathematics & Statistics), Volume 323, Springer, 2020, pp. 113-121 | DOI | MR | Zbl
[31] Pressure-induced locking in mixed methods for time-dependent (Navier–) Stokes equations, J. Comput. Phys., Volume 388 (2019), pp. 350-356 | DOI | MR | Zbl
[32] A robust finite element method for Darcy–Stokes flow, SIAM J. Numer. Anal., Volume 40 (2002) no. 5, pp. 1605-1631 | DOI | MR | Zbl
[33] Stokes elements on cubic meshes yielding divergence-free approximations, Calcolo, Volume 53 (2016) no. 3, pp. 263-283 | DOI | MR
[34] Stability and approximability of the element for Stokes equations, Int. J. Numer. Methods Fluids, Volume 54 (2007) no. 5, pp. 497-515 | MR | Zbl
[35] Divergence-free -FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics, J. Sci. Comput., Volume 75 (2018) no. 2, pp. 830-858 | DOI | MR | Zbl
[36] Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO, Modélisation Math. Anal. Numér., Volume 19 (1985) no. 1, pp. 111-143 | DOI | Numdam | MR | Zbl
[37] A technique for analysing finite element methods for viscous incompressible flow, Int. J. Numer. Methods Fluids, Volume 11 (1990) no. 6, pp. 935-948 | DOI | MR | Zbl
[38] A discrete de Rham complex with enhanced smoothness, Calcolo, Volume 43 (2006) no. 4, pp. 287-306 | MR | Zbl
[39] A viscosity-independent error estimate of a pressure-stabilized Lagrange-Galerkin scheme for the Oseen problem, J. Sci. Comput., Volume 80 (2019) no. 2, pp. 834-858 | DOI | MR | Zbl
[40] Uniformly stable finite element methods for Darcy–Stokes–Brinkman models, J. Comput. Math., Volume 26 (2008) no. 3, pp. 437-455 | MR
[41] Iterative methods by space decomposition and subspace correction, SIAM Rev., Volume 34 (1992) no. 4, pp. 581-613 | MR | Zbl
[42] A new divergence-free interpolation operator with applications to the Darcy–Stokes–Brinkman equations, SIAM J. Sci. Comput., Volume 32 (2010) no. 2, pp. 855-874 | MR | Zbl
[43] A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comput., Volume 74 (2005) no. 250, pp. 543-554 | DOI | MR | Zbl
[44] On the Powell–Sabin divergence-free finite element for the Stokes equations, J. Comput. Math., Volume 26 (2008) no. 3, pp. 456-470 | MR | Zbl
[45] Divergence-free finite elements on tetrahedral grids for , Math. Comput., Volume 80 (2011) no. 274, pp. 669-695 | DOI | MR | Zbl
[46] Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids, Calcolo, Volume 48 (2011) no. 3, pp. 211-244 | DOI | MR | Zbl
[47] A family of divergence-free finite elements on rectangular grids, SIAM J. Numer. Anal., Volume 47 (2090) no. 3, pp. 2090-2107 | DOI | MR | Zbl
Cité par Sources :