A low-degree strictly conservative finite element method for incompressible flows on general triangulations
The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 225-248.

In this study, a new P 2 -P 1 finite element pair is proposed for incompressible fluid. For this pair, the discrete inf-sup condition and the discrete Korn’s inequality hold for general triangulations. It yields strictly conservative velocity approximations when applied to models of incompressible flows. The convergence rate of the scheme can only be proved to be of suboptimal 𝒪(h) order, though, based on the property of strict conservation, the robust capacity of the pair for incompressible flows is verified theoretically and numerically.

Publié le :
DOI : 10.5802/smai-jcm.85
Classification : 65N12, 65N30, 76D05
Mots clés : incompressible (Navier–)Stokes equations, Brinkman equations, inf-sup condition, discrete Korn’s inequality, strictly conservative scheme, pressure-robust discretization
Zeng, Huilan 1 ; Zhang, Chen-Song 1 ; Zhang, Shuo 1

1 LSEC, Institute of Computational Mathematics and Scientific/Engineering Computation, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
@article{SMAI-JCM_2022__8__225_0,
     author = {Zeng, Huilan and Zhang, Chen-Song and Zhang, Shuo},
     title = {A low-degree strictly conservative finite element method for incompressible flows on general triangulations},
     journal = {The SMAI Journal of computational mathematics},
     pages = {225--248},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.85},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/smai-jcm.85/}
}
TY  - JOUR
AU  - Zeng, Huilan
AU  - Zhang, Chen-Song
AU  - Zhang, Shuo
TI  - A low-degree strictly conservative finite element method for incompressible flows on general triangulations
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 225
EP  - 248
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://archive.numdam.org/articles/10.5802/smai-jcm.85/
DO  - 10.5802/smai-jcm.85
LA  - en
ID  - SMAI-JCM_2022__8__225_0
ER  - 
%0 Journal Article
%A Zeng, Huilan
%A Zhang, Chen-Song
%A Zhang, Shuo
%T A low-degree strictly conservative finite element method for incompressible flows on general triangulations
%J The SMAI Journal of computational mathematics
%D 2022
%P 225-248
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U http://archive.numdam.org/articles/10.5802/smai-jcm.85/
%R 10.5802/smai-jcm.85
%G en
%F SMAI-JCM_2022__8__225_0
Zeng, Huilan; Zhang, Chen-Song; Zhang, Shuo. A low-degree strictly conservative finite element method for incompressible flows on general triangulations. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 225-248. doi : 10.5802/smai-jcm.85. http://archive.numdam.org/articles/10.5802/smai-jcm.85/

[1] Arnold, Douglas N.; Qin, Jinshui Quadratic velocity/linear pressure Stokes elements, Advances in Computer Methods for Partial Differential Equations VII, IMACS, 1992, pp. 28-34

[2] Auricchio, Ferdinando; Beirão da Veiga, Lourenço; Lovadina, Carlo; Reali, Alessandro The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 5-8, pp. 314-323 | DOI | MR | Zbl

[3] Auricchio, Ferdinando; Beirão da Veiga, Lourenço; Lovadina, Carlo; Reali, Alessandro; Taylor, Robert L.; Wriggers, Peter Approximation of incompressible large deformation elastic problems: some unresolved issues, Comput. Mech., Volume 52 (2013) no. 5, pp. 1153-1167 | DOI | MR | Zbl

[4] Ayuso De Dios, Blanca; Brezzi, Franco; Marini, Luisa D.; Xu, Jinchao; Zikatanov, Ludmil A simple preconditioner for a discontinuous Galerkin method for the Stokes problem, J. Sci. Comput., Volume 58 (2014) no. 3, pp. 517-547 | DOI | MR | Zbl

[5] Bernardi, Christine; Raugel, Geneviève Analysis of some finite elements for the Stokes problem, Math. Comput., Volume 44 (1985), pp. 71-79 | DOI | MR | Zbl

[6] Brenner, Susanne C.; Scott, Larkin R. The mathematical theory of finite element methods, Texts in Applied Mathematics, 15, Springer, 2002 | DOI

[7] Brezzi, Franco On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Franc. Automat. Inform. Rech. Operat., Volume 8 (1974) no. R-2, pp. 129-151 | Numdam | MR | Zbl

[8] Brezzi, Franco; Douglas, Jr Jim; Marini, Luisa D. Recent results on mixed finite element methods for second order elliptic problems, Vistas in applied mathematics, Optimization Software; Springer, 1986, pp. 25-43

[9] Brezzi, Franco; Fortin, Michel Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer, 1991 | DOI

[10] Bruneau, Charles-Henri; Saad, Mazen The 2D lid-driven cavity problem revisited, Comput. Fluids, Volume 35 (2006) no. 3, pp. 326-348 | DOI | Zbl

[11] Chen, Shaochun; Dong, Lina; Qiao, Zhonghua Uniformly convergent H(div)-conforming rectangular elements for Darcy–Stokes problem, Sci. China, Math., Volume 56 (2013) no. 12, pp. 2723-2736 | DOI | MR | Zbl

[12] Ciarlet, Philippe G. The finite element method for elliptic problems, Studies in Mathematics and its Applications, 4, North-Holland, 1978 | Numdam

[13] Crouzeix, Michel; Raviart, Pierre-Arnaud Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Franc. Automat. Inform. Rech. Operat., Volume 7 (1973) no. R-3, pp. 33-75 | Numdam | MR

[14] Dahlen, F. A. On the static deformation of an earth model with a fluid core, Geophys. J. R. Astron. Soc., Volume 36 (1974) no. 2, pp. 461-485 | DOI

[15] Falk, Richard S.; Neilan, Michael Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM J. Numer. Anal., Volume 51 (2013) no. 2, pp. 1308-1326 | DOI | MR | Zbl

[16] Fortin, Michel An analysis of the convergence of mixed finite element methods, RAIRO, Anal. Numér., Volume 11 (1977) no. 4, pp. 341-354 | DOI | Numdam | MR | Zbl

[17] Gauger, Nicolas R.; Linke, Alexander; Schroeder, Philipp W. On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond, SMAI J. Comput. Math., Volume 5 (2019), pp. 89-129 | DOI | Numdam | MR | Zbl

[18] Girault, Vivette; Raviart, Pierre-Arnaud Finite element methods for Navier–Stokes equations, Springer Series in Computational Mathematics, 5, Springer, 1986 | DOI

[19] Guzmán, Johnny; Neilan, Michael Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal., Volume 34 (2013) no. 4, pp. 1489-1508 | DOI | MR | Zbl

[20] Guzmán, Johnny; Neilan, Michael Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comput., Volume 83 (2014) no. 285, pp. 15-36 | DOI | MR | Zbl

[21] Guzmán, Johnny; Neilan, Michael Inf-sup stable finite elements on barycentric refinements producing divergence-free approximations in arbitrary dimensions, SIAM J. Numer. Anal., Volume 56 (2018) no. 5, pp. 2826-2844 | DOI | MR | Zbl

[22] Hiptmair, Ralf; Li, Lingxiao; Mao, Shipeng; Zheng, Weiying A fully divergence-free finite element method for magnetohydrodynamic equations, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 4, pp. 1-37 | MR | Zbl

[23] Hong, Qingguo; Wang, Fei; Wu, Shuonan; Xu, Jinchao A unified study of continuous and discontinuous Galerkin methods, Sci. China, Math., Volume 62 (2019) no. 1, pp. 1-32 | DOI | MR | Zbl

[24] Hu, Kaibo; Ma, Yicong; Xu, Jinchao Stable finite element methods preserving ·B=0 exactly for MHD models, Numer. Math., Volume 135 (2017) no. 2, pp. 371-396 | MR

[25] Hu, Kaibo; Xu, Jinchao Structure-preserving finite element methods for stationary MHD models, Math. Comput., Volume 88 (2019) no. 316, pp. 553-581 | MR | Zbl

[26] Huang, Yunqing; Zhang, Shangyou A lowest order divergence-free finite element on rectangular grids, Front. Math. China, Volume 6 (2011) no. 2, pp. 253-270 | DOI | MR | Zbl

[27] John, Volker; Linke, Alexander; Merdon, Christian; Neilan, Michael; Rebholz, Leo G. On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev., Volume 59 (2017) no. 3, pp. 492-544 | DOI | MR | Zbl

[28] Johnny, Guzmán; Michael, Neilan A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal., Volume 32 (2012) no. 4, pp. 1484-1508 | DOI | MR | Zbl

[29] Kouhia, Reijo; Stenberg, Rolf A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Eng., Volume 124 (1995) no. 3, pp. 195-212 | DOI | MR | Zbl

[30] Linke, Alexander; Merdon, Christian Well-balanced discretisation for the compressible Stokes problem by gradient-robustness, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Springer Proceedings in Mathematics & Statistics), Volume 323, Springer, 2020, pp. 113-121 | DOI | MR | Zbl

[31] Linke, Alexander; Rebholz, Leo G. Pressure-induced locking in mixed methods for time-dependent (Navier–) Stokes equations, J. Comput. Phys., Volume 388 (2019), pp. 350-356 | DOI | MR | Zbl

[32] Mardal, Kent Andre; Tai, Xue-Cheng; Winther, Ragnar A robust finite element method for Darcy–Stokes flow, SIAM J. Numer. Anal., Volume 40 (2002) no. 5, pp. 1605-1631 | DOI | MR | Zbl

[33] Neilan, Michael; Sap, Duygu Stokes elements on cubic meshes yielding divergence-free approximations, Calcolo, Volume 53 (2016) no. 3, pp. 263-283 | DOI | MR

[34] Qin, Jinshui; Zhang, Shangyou Stability and approximability of the P 1 -P 0 element for Stokes equations, Int. J. Numer. Methods Fluids, Volume 54 (2007) no. 5, pp. 497-515 | MR | Zbl

[35] Schroeder, Philipp W.; Lube, Gert Divergence-free H(div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics, J. Sci. Comput., Volume 75 (2018) no. 2, pp. 830-858 | DOI | MR | Zbl

[36] Scott, Larkin R.; Vogelius, Michael Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO, Modélisation Math. Anal. Numér., Volume 19 (1985) no. 1, pp. 111-143 | DOI | Numdam | MR | Zbl

[37] Stenberg, Rolf A technique for analysing finite element methods for viscous incompressible flow, Int. J. Numer. Methods Fluids, Volume 11 (1990) no. 6, pp. 935-948 | DOI | MR | Zbl

[38] Tai, Xue-Cheng; Winther, Ragnar A discrete de Rham complex with enhanced smoothness, Calcolo, Volume 43 (2006) no. 4, pp. 287-306 | MR | Zbl

[39] Uchiumi, Shinya A viscosity-independent error estimate of a pressure-stabilized Lagrange-Galerkin scheme for the Oseen problem, J. Sci. Comput., Volume 80 (2019) no. 2, pp. 834-858 | DOI | MR | Zbl

[40] Xie, Xiaoping; Xu, Jinchao; Xue, Guangri Uniformly stable finite element methods for Darcy–Stokes–Brinkman models, J. Comput. Math., Volume 26 (2008) no. 3, pp. 437-455 | MR

[41] Xu, Jinchao Iterative methods by space decomposition and subspace correction, SIAM Rev., Volume 34 (1992) no. 4, pp. 581-613 | MR | Zbl

[42] Xu, Xuejun; Zhang, Shangyou A new divergence-free interpolation operator with applications to the Darcy–Stokes–Brinkman equations, SIAM J. Sci. Comput., Volume 32 (2010) no. 2, pp. 855-874 | MR | Zbl

[43] Zhang, Shangyou A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comput., Volume 74 (2005) no. 250, pp. 543-554 | DOI | MR | Zbl

[44] Zhang, Shangyou On the P 1 Powell–Sabin divergence-free finite element for the Stokes equations, J. Comput. Math., Volume 26 (2008) no. 3, pp. 456-470 | MR | Zbl

[45] Zhang, Shangyou Divergence-free finite elements on tetrahedral grids for k6, Math. Comput., Volume 80 (2011) no. 274, pp. 669-695 | DOI | MR | Zbl

[46] Zhang, Shangyou Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids, Calcolo, Volume 48 (2011) no. 3, pp. 211-244 | DOI | MR | Zbl

[47] Zhang, Shangyou A family of Q k+1,k ×Q k,k+1 divergence-free finite elements on rectangular grids, SIAM J. Numer. Anal., Volume 47 (2090) no. 3, pp. 2090-2107 | DOI | MR | Zbl

Cité par Sources :