Parallel kinetic scheme for transport equations in complex toroidal geometry
The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 249-271.

We present an efficient solver for the conservative transport equation with variable coefficients in complex toroidal geometries. The solver is based on a kinetic formulation resembling the Lattice-Boltzmann approach. The chosen formalism allows obtaining an explicit and conservative scheme that requires no matrix inversion and whose CFL stability condition is independent from the poloidal dynamics. We present the method and its optimized parallel implementation on toroidal geometries. Two and three dimensional plasma physics test cases are carried out.

Publié le :
DOI : 10.5802/smai-jcm.86
Classification : 35L65, 65M12, 35Q83, 82D10
Mots clés : plasma physics, kinetic scheme, discontinuous Galerkin
Boileau, Matthieu 1 ; Bramas, Bérenger 2 ; Franck, Emmanuel 1 ; Hélie, Romane 1 ; Helluy, Philippe 1 ; Navoret, Laurent 1

1 Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67000 Strasbourg, France & INRIA Nancy-Grand Est, TONUS Project, Strasbourg, France
2 INRIA Nancy-Grand Est, CAMUS Project, Strasbourg, France
@article{SMAI-JCM_2022__8__249_0,
     author = {Boileau, Matthieu and Bramas, B\'erenger and Franck, Emmanuel and H\'elie, Romane and Helluy, Philippe and Navoret, Laurent},
     title = {Parallel kinetic scheme for transport equations in complex toroidal geometry},
     journal = {The SMAI Journal of computational mathematics},
     pages = {249--271},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.86},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/smai-jcm.86/}
}
TY  - JOUR
AU  - Boileau, Matthieu
AU  - Bramas, Bérenger
AU  - Franck, Emmanuel
AU  - Hélie, Romane
AU  - Helluy, Philippe
AU  - Navoret, Laurent
TI  - Parallel kinetic scheme for transport equations in complex toroidal geometry
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 249
EP  - 271
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://archive.numdam.org/articles/10.5802/smai-jcm.86/
DO  - 10.5802/smai-jcm.86
LA  - en
ID  - SMAI-JCM_2022__8__249_0
ER  - 
%0 Journal Article
%A Boileau, Matthieu
%A Bramas, Bérenger
%A Franck, Emmanuel
%A Hélie, Romane
%A Helluy, Philippe
%A Navoret, Laurent
%T Parallel kinetic scheme for transport equations in complex toroidal geometry
%J The SMAI Journal of computational mathematics
%D 2022
%P 249-271
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U http://archive.numdam.org/articles/10.5802/smai-jcm.86/
%R 10.5802/smai-jcm.86
%G en
%F SMAI-JCM_2022__8__249_0
Boileau, Matthieu; Bramas, Bérenger; Franck, Emmanuel; Hélie, Romane; Helluy, Philippe; Navoret, Laurent. Parallel kinetic scheme for transport equations in complex toroidal geometry. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 249-271. doi : 10.5802/smai-jcm.86. http://archive.numdam.org/articles/10.5802/smai-jcm.86/

[1] Aregba-Driollet, D.; Natalini, R. Discrete kinetic schemes for multidimensional systems of conservation laws, SIAM J. Numer. Anal., Volume 37 (2000) no. 6, pp. 1973-2004 | DOI | MR | Zbl

[2] Badwaik, J.; Boileau, M.; Coulette, D.; Franck, E.; Helluy, P.; Klingenberg, C.; Mendoza, L.; Oberlin, H. Task-based parallelization of an implicit kinetic scheme, ESAIM, Proc. Surv., Volume 63 (2018), pp. 60-77 | DOI | MR | Zbl

[3] Besse, N.; Mehrenberger, M. Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov–Poisson system, Math. Comput., Volume 77 (2008) no. 261, pp. 93-123 | DOI | MR | Zbl

[4] Bouchut, F. Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys., Volume 95 (1999) no. 1-2, pp. 113-170 | DOI | MR | Zbl

[5] Bramas, B.; Ketterlin, A. Improving parallel executions by increasing task granularity in task-based runtime systems using acyclic DAG clustering, PeerJ Computer Science, Volume 6 (2020), e247 | DOI

[6] Chen, S.; Doolen, G. D. Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., Volume 30 (1998) no. 1, pp. 329-364 | DOI | MR | Zbl

[7] Coulette, D.; Franck, E.; Helluy, P.; Mehrenberger, M.; Navoret, L. High-order implicit palindromic Discontinuous Galerkin method for kinetic-relaxation approximation, Comput. Fluids (2019) | DOI | MR | Zbl

[8] Courtès, C.; Coulette, D.; Franck, E.; Navoret, L. Vectorial kinetic relaxation model with central velocity. application to implicit relaxations schemes, Commun. Comput. Phys., Volume 27 (2020) no. 4 | MR | Zbl

[9] Crouseilles, N.; Glanc, P.; Hirstoaga, S. A.; Madaule, E.; Mehrenberger, M.; Pétri, J. A new fully two-dimensional conservative semi-Lagrangian method: applications on polar grids, from diocotron instability to ITG turbulence, Eur. Phys. J. D, Atomic Mol. Opt. Plasma Phys., Volume 68 (2014) no. 9, 252 | DOI | HAL

[10] Dellar, P. J. An interpretation and derivation of the lattice Boltzmann method using Strang splitting, Comput. Math. Appl., Volume 65 (2013) no. 2, pp. 129-141 | DOI | MR | Zbl

[11] Dimarco, G.; Loubère, R. Towards an ultra efficient kinetic scheme. Part I: Basics on the BGK equation, J. Comput. Phys., Volume 255 (2013), pp. 680-698 | DOI | MR | Zbl

[12] Dimarco, G.; Loubère, R.; Narski, J.; Rey, T. An efficient numerical method for solving the Boltzmann equation in multidimensions, J. Comput. Phys., Volume 353 (2018), pp. 46-81 | DOI | MR | Zbl

[13] Drui, F.; Franck, E.; Helluy, P.; Navoret, L. An analysis of over-relaxation in a kinetic approximation of systems of conservation laws, C. R. Méc. Acad. Sci. Paris, Volume 347 (2019) no. 3, pp. 259-269

[14] Dubois, F. Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes, Asymptotic Anal., Volume 127 (2022) no. 4, pp. 297-337 | DOI | MR | Zbl

[15] Dubois, F.; Février, T.; Graille, B. Lattice Boltzmann schemes with relative velocities, Commun. Comput. Phys., Volume 17 (2015) no. 4, pp. 1088-1112 | DOI | MR | Zbl

[16] Dubois, F.; Lallemand, P. Towards higher order lattice Boltzmann schemes, J. Stat. Mech. Theory Exp., Volume 2009 (2009) no. 6 | DOI | Zbl

[17] Graille, B. Approximation of mono-dimensional hyperbolic systems: A lattice Boltzmann scheme as a relaxation method, J. Comput. Phys., Volume 266 (2014), pp. 74-88 | DOI | MR | Zbl

[18] Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, C.; Esteve, D.; Garbet, X.; Ghendrih, P. et al. A 5D gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations, Comput. Phys. Commun., Volume 207 (2016), pp. 35-68 | DOI | MR | Zbl

[19] Guillard, H.; Lakhlili, J.; Loseille, A.; Loyer, A.; Nkonga, B.; Ratnani, .; Elarif, A. Tokamesh: A software for mesh generation in Tokamaks (2018) (Research Report, RR-9230, CASTOR.)

[20] Hesthaven, J. S.; Warburton, T. Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, Springer, 2007

[21] Latu, G.; Mehrenberger, M.; Güçlü, Y.; Ottaviani, M.; Sonnendrücker, E. Field-aligned interpolation for semi-Lagrangian gyrokinetic simulations, J. Sci. Comput., Volume 74 (2018) no. 3, pp. 1601-1650 | DOI | MR | Zbl

[22] Madaule, E.; Hirstoaga, S. A.; Mehrenberger, M.; Pétri, J. Semi-Lagrangian simulations of the diocotron instability (2013) (Research Report) | HAL

[23] Qian, Y. H.; d’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation, Eur. Phys. Lett., Volume 17 (1992) no. 6, p. 479 | DOI | Zbl

[24] Sonnendrücker, E.; Roche, J.; Bertrand, P.; Ghizzo, A. The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., Volume 149 (1999) no. 2, pp. 201-220 | DOI | MR | Zbl

[25] Storelli, A.; Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Dif-Pradalier, G.; Sarazin, Y.; Garbet, X.; Görler, T.; Singh, R.; Morel, P.; Grandgirard, V.; Ghendrih, P.; Tore Supra team Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations, Phys. Plasmas, Volume 22 (2015) no. 6, p. 062508 | DOI

[26] Zhang, R.; Fan, H.; Chen, H. A lattice Boltzmann approach for solving scalar transport equations, Philos. Trans. R. Soc. Lond., Ser. A, Volume 369 (2011) no. 1944, pp. 2264-2273 | MR | Zbl

Cité par Sources :