Inverse Scattering for Waveguides
Séminaire de théorie spectrale et géométrie, Tome 25 (2006-2007) , pp. 71-83.

We study the inverse scattering problem for a waveguide (M,g) with cylindrical ends, M=M c α=1 N (Ω α ×(0,)), where each Ω α ×(0,) has a product type metric. We prove, that the physical scattering matrix, measured on just one of these ends, determines (M,g) up to an isometry.

DOI : https://doi.org/10.5802/tsg.248
Classification : 58J50,  35R30
@article{TSG_2006-2007__25__71_0,
     author = {Isozaki, Hiroshi and Kurylev, Yaroslav and Lassas, Matti},
     title = {Inverse Scattering for Waveguides},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {71--83},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {25},
     year = {2006-2007},
     doi = {10.5802/tsg.248},
     mrnumber = {2478809},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/tsg.248/}
}
Isozaki, Hiroshi; Kurylev, Yaroslav; Lassas, Matti. Inverse Scattering for Waveguides. Séminaire de théorie spectrale et géométrie, Tome 25 (2006-2007) , pp. 71-83. doi : 10.5802/tsg.248. http://archive.numdam.org/articles/10.5802/tsg.248/

[1] Berard P., Besson G., Gallot S. Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal, 4 (1994), 373-398. | MR 1280119 | Zbl 0806.53044

[2] Christiansen T., Scattering theory for manifolds with asymptotically cylindrical ends, J. Funct. Anal. 131 (1995), 499-530. | MR 1345040 | Zbl 0837.58034

[3] Christiansen T. and Zworski R., Spectral asymptotics for m anifolds with cylindrical ends, Ann. Inst. Fourier (Grenoble), 45 (1995), 251-263. | Numdam | MR 1324132 | Zbl 0818.58046

[4] Colin de Verdière, Y., Une nouvelle démonstration du prolonement méromorphe des série d’ Eisenstein, C. R. Acad. Sc. Paris, t. 293 (1981), 361-363. | Zbl 0478.30035

[5] Dediu S., McLaughlin J. Recovering inhomogeneities in a wave guide using eigensystem decomposition, Inverse Problems 32 (2006), 1226-1246. | MR 2249462 | Zbl 1112.76066

[6] Eidus D., Completeness properties of scattering problem solutions. Comm. PDE 7 (1982), 55–75. | MR 643157 | Zbl 0505.35068

[7] Eskin G., Ralston J., Yamamoto M., Inverse scattering for gratings and wave guides. Preprint: arXiv:0704.2274v1

[8] Faddeev L.D., The inverse problem in the quantum theory of scattering. II. (Russian) Current problems in mathematics, 3 (Russian), (1974), 93–180. | MR 523015 | Zbl 0299.35027

[9] Gilbert R.P., Mawata C., Xu Y., Determination of a distributed inhomogeneity in a two-layered waveguide from scatteed sound, in: Direct and Inverse Problems of Mathematical Physics, ed. Gilbert R. et al, Kluwer, 2000. | MR 1766294 | Zbl 0964.35177

[10] Goldstein C., Eigenfunction expansions associated with the Laplacian for certain domains with infinte boundaries, Trans. A. M. S. 135 (1969), 1-50. | MR 234140 | Zbl 0174.41703

[11] Goldstein C., Meromorphic continuation of the S-matrix for the operator -Δ actying in a cylinder, Proc. A. M. S. 42 (1974), 555-562. | MR 355687 | Zbl 0276.35028

[12] Isakov V. and Nachman A., Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347 (1995), 3375–3390 | MR 1311909 | Zbl 0849.35148

[13] Isozaki H., Kurylev Y. and Lassas M., Spectral and scattering properties for the compound waveguides with asymptotially cylindirical ends, in preparation.

[14] Khenkin G.M., Novikov R., The ¯-equation in the multidimensional inverse scattering problem. (Russian), Usp. Mat. Nauk 42 (1987), 93–152 | MR 896879 | Zbl 0674.35085

[15] Kachalov A., Kurylev Ya., Lassas M., Inverse Boundary Spectral Problems, Chapman Hall / CRC 123, 2001. | MR 1889089 | Zbl 1037.35098

[16] Kachalov A., Kurylev Y., Lassas M., Energy measurements and equivalence of boundary data for inverse problems on non-compact manifolds. IMA volumes in Mathematics and Applications (Springer Verlag) Geometric Methods in Inverse Problems and PDE Control, Ed. C. Croke, I. Lasiecka, G. Uhlmann, M. Vogelius, 2004, pp. 183-214. | MR 2169904 | Zbl 1061.35166

[17] Lyford W.C., Spectral analysis of the Laplacian in domains with cylinders, Math. Ann, 218 (1975), 229-251. | EuDML 162797 | MR 387833 | Zbl 0313.35060

[18] Lyford W.C., Asymptotic energy propagation and scattering of waves in waveguides with cylinders, Math. Ann, 219 (1976), 193-212. | EuDML 182768 | MR 430558 | Zbl 0318.35056

[19] Melrose R. B., Geometric Scattering Theory. Cambridge University Press, Cambridge (1995), 116 pp. | MR 1350074 | Zbl 0849.58071

[20] Nachman A., Sylvester J., Uhlmann G., An n-dimensional Borg-Levinson theorem. Comm. Math. Phys. 115 (1988), 595–605. | MR 933457 | Zbl 0644.35095

[21] Sylvester J., Uhlmann G., A global uniqueness theorem for an inverse boundary value problem. Ann. Math., 125 (1987), 153–169. | MR 873380 | Zbl 0625.35078

[22] Wilcox C., Spectral and asymptotic analysis of acoustic wave propagation, in: Boundary value problems for linear evolution: partial differential equations, NATO Advanced Study Inst. Ser., Ser. C: Math. and Phys. Sci., 29, Reidel, Dordrecht, (1977), 386-473. | MR 460901 | Zbl 0359.35059