@incollection{XUPS_1999____1_0, author = {Martin, Philippe and Rouchon, Pierre}, title = {Syst\`emes plats~: planification et suivi de trajectoires}, booktitle = {Aspects de la th\'eorie du contr\^ole}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {1--126}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {1999}, doi = {10.5802/xups.1999-01}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/xups.1999-01/} }
TY - JOUR AU - Martin, Philippe AU - Rouchon, Pierre TI - Systèmes plats : planification et suivi de trajectoires JO - Journées mathématiques X-UPS PY - 1999 SP - 1 EP - 126 PB - Les Éditions de l’École polytechnique UR - http://archive.numdam.org/articles/10.5802/xups.1999-01/ DO - 10.5802/xups.1999-01 LA - fr ID - XUPS_1999____1_0 ER -
%0 Journal Article %A Martin, Philippe %A Rouchon, Pierre %T Systèmes plats : planification et suivi de trajectoires %J Journées mathématiques X-UPS %D 1999 %P 1-126 %I Les Éditions de l’École polytechnique %U http://archive.numdam.org/articles/10.5802/xups.1999-01/ %R 10.5802/xups.1999-01 %G fr %F XUPS_1999____1_0
Martin, Philippe; Rouchon, Pierre. Systèmes plats : planification et suivi de trajectoires. Journées mathématiques X-UPS, Aspects de la théorie du contrôle (1999), pp. 1-126. doi : 10.5802/xups.1999-01. http://archive.numdam.org/articles/10.5802/xups.1999-01/
[1] Polymer processing, principles and modeling, Hanser, 1991
[2] Theory and practice in the motion planning and control of a flexible robot arm using Mikusiński operators, Proc. of the Fifth IFAC Symposium on Robot Control, Nantes, France (1997), pp. 287-293
[3] A linear algebraic framework for dynamic feedback linearization, IEEE Trans. Automat. Contr., Volume 40 (1995) no. 1, pp. 127-132 | DOI | MR | Zbl
[4] An analysis of chemical reactor stability and control : I,II,III, Chem. Engng. Sci., Volume 7 (1958), pp. 121-155 | DOI
[5] Sur l’intégrabilité (très) formelle d’une partie des équations de la platitude des systèmes de contrôle, 2006 | HAL
[6] Flatness and Monge parameterization of two-input systems, control-affine with 4 states or general with 3 states, ESAIM : Control, Optimisation and Calculus of Variations, Volume 13 (2007), p. 237 | Numdam | MR | Zbl
[7] Local controllability of a 1D Schrödinger equation, J. Math. Pures et Appl., Volume 84 (2005), pp. 851-956 | DOI | Zbl
[8] Controllability of a quantum particule in a 1D variable domain, ESAIM : Control, Optimisation and Calculus of Variations, Volume 14 (2008), pp. 105-147 | Zbl
[9] Controllability of a quantum particle in a moving potential well, J. of Functional Analysis, Volume 232 (2006), pp. 328-389 | DOI | MR | Zbl
[10] Exterior differential systems, Springer, 1991 | DOI
[11] Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robotics Automation, Volume 12 (1996) no. 1, pp. 47-62 | DOI
[12] Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur certaines familles de courbes, Bull. Soc. Math. France, Volume 42 (1914), pp. 12-48 (Œuvres Complètes, II, vol. 2, p.1133–1168, CNRS, Paris, 1984) | DOI | Numdam | Zbl
[13] Sur l’intégration de certains systèmes indéterminés d’équations différentielles, J. für reine und angew. Math., Volume 145 (1915), pp. 86-91 (Œuvres Complètes, II, vol. 2, p.1164–1174, CNRS, Paris, 1984) | DOI | MR | Zbl
[14] Inversion in indirect optimal control of multivariable systems, ESAIM : Control, Optimisation and Calculus of Variations, Volume 14 (2008), pp. 294-317 | Numdam | MR | Zbl
[15] On dynamic feedback linearization, Systems Control Letters, Volume 13 (1989), pp. 143-151 | DOI | MR | Zbl
[16] New flatness conditions for control systems, Proceedings of NOLCOS’01, St. Petersburg (2001), pp. 168-173
[17] Dynamic feedback linearization of the induction motor, IEEE Trans. Automat. Control, Volume 38 (1993), pp. 1588-1594 | DOI | MR
[18] A mathematical introduction to fluid mechanics, Springer-Verlag, 1990 | DOI
[19] Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM : Control, Optimisation and Calculus of Variations, Volume 8 (2002), pp. 513-554 | Numdam | MR | Zbl
[20] Control and nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, Providence, RI, 2007
[21] Methods of mathematical physics, 2, Interscience, 1962
[22] Control of flat systems by quasi-static feedback of generalized states, Int. Journal of Control, Volume 71 (1998), pp. 745-765 | DOI | MR | Zbl
[23] Handbuch der Laplace-Transformation, Birkhäuser, Bâle, 1956 (3. Bd.)
[24] Motion planning for a non-linear Stefan equation, ESAIM : Control, Optimisation and Calculus of Variations, Volume 9 (2003), pp. 275-296 | Zbl
[25] Controlling nonlinear systems by flatness, Systems and control in the Twenty-First Century (Byrnes, C.I.; Datta, B.N.; Gilliam, D.S.; Martin, C.F., eds.) (Progress in Systems and Control Theory), Birkhäuser, 1997
[26] A remark on nonlinear accessibility conditions and infinite prolongations, Syst. Control Letters, Volume 31 (1997), pp. 77-83 | DOI | MR | Zbl
[27] Sur les systèmes non linéaires différentiellement plats, C.R. Acad. Sci. Paris, Volume I–315 (1992), pp. 619-624 | Zbl
[28] Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, C.R. Acad. Sci. Paris, Volume I-317 (1993), pp. 981-986 | Zbl
[29] Design of trajectory stabilizing feedback for driftless flat systems, Proc. of the rd European Control Conf., Rome (1995), pp. 1882-1887
[30] Flatness and defect of nonlinear systems : introductory theory and examples, Int. J. Control, Volume 61 (1995) no. 6, pp. 1327-1361 | DOI | Zbl
[31] A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems, IEEE Trans. Automatic Control, Volume 44 (1999), pp. 922-937 | DOI | Zbl
[32] Active signal restoration for the telegraph equation, Proc. of the 38th IEEE Conf. on Decision and Control, Phoenix (1999)
[33] Quelques propriétés structurelles des systèmes linéaires à retards constants, C.R. Acad. Sci. Paris, Volume I-319 (1994), pp. 289-294 | Zbl
[34] Controllability and observability of linear delay systems : an algebraic approach, ESAIM : Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 301-314 | Numdam | MR | Zbl
[35] Controllability and motion planning for linear delay systems with an application to a flexible rod, Proc. of the th IEEE Conf. on Decision and Control, New Orleans (1995), pp. 2046-2051
[36] Systèmes linéaires sur les opérateurs de Mikusiński et commande d’une poutre flexible, ESAIM Proc. “Élasticité, viscolélasticité et contrôle optimal”, 8ème entretiens du centre Jacques Cartier, Lyon (1996), pp. 157-168
[37] A Distributed parameter approach to the control of a tubular reactor : a multi- variable case, Proc. of the th IEEE Conf. on Decision and Control (1998), pp. 439-442 | DOI
[38] La nature analytique des solutions des équations aux dérivées partielles, Ann. Sc. Ecole Norm. Sup., Volume 35 (1918), pp. 129-190 | DOI | Numdam | Zbl
[39] Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969
[40] Partial differential relations, Springer-Verlag, 1986 | DOI
[41] Les distributions, tome 3, Dunod, Paris, 1964
[42] Continuous-time non-linear flatness-based predictive control : an exact feedforward linearisation setting with an induction drive example, International Journal of Control, Volume 81 (2008) no. 10, pp. 1645-1663 | DOI | MR | Zbl
[43] Exploring the quantum : atoms, cavities and photons, Oxford University Press, 2006 | DOI
[44] Nonlinear control via approximated input-output linearization : the ball and beam example, IEEE Trans. Automat. Contr., Volume 37 (1992), pp. 392-398 | DOI
[45] Über den Begriff der Klasse von Differentialgleichungen, Math. Ann., Volume 73 (1912), pp. 95-108 (also in Gesammelte Abhandlungen, vol. III, pp. 81–93, Chelsea, New York, 1965) | DOI | Zbl
[46] Global transformations of nonlinear systems, IEEE Trans. Automat. Control, Volume 28 (1983), pp. 24-31 | DOI | MR | Zbl
[47] Nonlinear control systems, Springer, New York, 1989 | DOI
[48] On linearization of control systems, Bull. Acad. Pol. Sci. Ser. Sci. Math., Volume 28 (1980), pp. 517-522 | MR
[49] Linear systems, Prentice-Hall, Englewood Cliffs, NJ, 1980
[50] On the control of a reduced scale model of the US Navy cranes, 3rd IEEE International Conference on Intelligent Engineering Systems (1999)
[51] Geometry of jet spaces and nonlinear partial differential equations, Gordon and Breach, New York, 1986
[52] Mécanique des fluides, Mir Moscou, 1986
[53] Boundary feedback stabilization of rotation body-beam system, IEEE Autom. Control, Volume 41 (1996), pp. 1-5
[54] Motion planing for the heat equation, Int. Journal of Robust and Nonlinear Control, Volume 10 (2000), pp. 629-643 | DOI | Zbl
[55] , the juggling robot, Proc. of the th IEEE Conf. on Decision and Control (1998), pp. 1995-2000 | DOI
[56] Control of electrical drives, Elsevier, 1985
[57] Are there new industrial perspectives in the control of mechanical systems ?, In Issues in Control, ECC99 (Frank, P., ed.), Springer (1999)
[58] On necessary and sufficient conditions for differential flatness, 2006 | arXiv
[59] A nonlinear approach to the control of magnetic bearings, IEEE Trans. Control Systems Technology, Volume 4 (1996), pp. 524-544 | DOI
[60] On the control of US Navy cranes, ECC97 (1997)
[61] Contribution à l’étude des systèmes diffèrentiellement plats, Ph. D. Thesis, École des Mines de Paris (1992)
[62] A geometric sufficient conditions for flatness of systems with inputs and states, Proc. of the nd IEEE Conf. on Decision and Control, San Antonio (1993), pp. 3431-3436 | DOI
[63] An intrinsic condition for regular decoupling, Systems & Control Letters, Volume 20 (1993), pp. 383-391 | DOI | MR | Zbl
[64] Endogenous feedbacks and equivalence, Systems and Networks : Mathematical Theory and Applications (MTNS’93), Volume II, Akademie Verlag, Berlin, 1994, pp. 343-346 | Zbl
[65] A different look at output tracking : control of a VTOL aircraft, Automatica, Volume 32 (1995), pp. 101-108 | DOI | Zbl
[66] Flat systems, equivalence and trajectory generation, 2003 | HAL
[67] Feedback linearization and driftless systems, Math. Control Signal Syst., Volume 7 (1994), pp. 235-254 | DOI | MR | Zbl
[68] Any (controllable) driftless system with 3 inputs and 5 states is flat, Systems Control Letters, Volume 25 (1995), pp. 167-173 | DOI | MR | Zbl
[69] Any (controllable) driftless system with inputs and states is flat, Proc. of the th IEEE Conf. on Decision and Control, New Orleans (1995), pp. 2886-2891
[70] Flatness and sampling control of induction motors, Proc. IFAC World Congress, San Francisco (1996), pp. 389-394
[71] Invariant tracking, ESAIM : Control, Optimisation and Calculus of Variations, Volume 10 (2004), pp. 1-13 | Numdam | MR | Zbl
[72] A modal approach to flatness-based control of flexible structures, Proc. Appl. Math. Mech, Volume 4 (2004) no. 1, pp. 133-134 | DOI | Zbl
[73] Feedforward and feedback tracking control of nonlinear diffusion-convection-reaction systems using summability methods, Industrial & Engineering Chemistry Research, Volume 44 (2005) no. 8, pp. 2532-2548 | DOI
[74] Controllability of quantum harmonic oscillators, IEEE Trans Automatic Control, Volume 49 (2004) no. 5, pp. 745-747 | DOI | MR | Zbl
[75] Mémoire de l’Académie Royale des Sciences. Supplément où l’on fait voir que les équations aux différences ordinaires pour lesquelles les conditions d’intégrabilité ne sont pas satisfaites sont succeptibles d’une véritable intégration..., Paris (1784), pp. 502-576
[76] Galoisian obstructions to integrability of Hamiltonian systems, Methods and Applications of Analysis, Volume 8 (2001), pp. 33-95 | DOI | MR | Zbl
[77] Propriétés structurelles des systèmes linéaires à retards : aspects théoriques et pratiques, Ph. D. Thesis, Université Paris Sud, Orsay (1995)
[78] A flexible rod as a linear delay system, Proc. of the rd European Control Conf., Rome (1995), pp. 3676-3681
[79] Nilpotent bases for a class on nonintegrable distributions with applications to trajectory generation for nonholonomic systems, Math. Control Signal Syst., Volume 7 (1994), pp. 58-75 | DOI | MR
[80] Trajectory generation for a towed cable flight control system, Proc. IFAC World Congress, San Francisco (1996), pp. 395-400
[81] Differential flatness of mechanical control systems : a catalog of prototype systems, ASME International Mechanical Engineering Congress and Exposition, San Francisco (1995) | DOI | MR | Zbl
[82] Nonholonomic motion planning : steering using sinusoids, IEEE Trans. Automat. Control, Volume 38 (1993), pp. 700-716 | DOI | MR | Zbl
[83] Dynamics of nonholonomic systems, Translations of Mathematical Monographs, 33, American Mathematical Society, Providence, Rhode Island, 1972
[84] Approximate trajectory generation for differentially flat systems with zero dynamics, Proc. of the th IEEE Conf. on Decision and Control, New Orleans (1995), pp. 4224-4230
[85] Real time trajectory generation for differentially flat systems, Int. Journal of Robust and Nonlinear Control, Volume 8 (1998) no. 11, pp. 995-1020 | DOI | MR | Zbl
[86] Differential flatness and absolute equivalence, SIAM J. Control Optimization, Volume 36 (1998) no. 4, pp. 1225-1239 | DOI | Zbl
[87] Nonlinear dynamical control systems, Springer-Verlag, 1990 | DOI
[88] A generalization of flatness to nonlinear systems of partial differential equations. Application to the command of a flexible rod, Proceedings of the 5th IFAC Symposium NOnLinear COntrol Systems (2001), pp. 196-200
[89] Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, 1993 | DOI
[90] Flatness of nonlinear control systems : a Cartan-Kähler approach, Proc. Mathematical Theory of Networks and Systems (MTNS’2000), Perpignan (2000), pp. 1-10
[91] Flatness-based control of a single qubit gate, IEEE Automatic Control, Volume 53 (2008) no. 3, pp. 775-779 | MR | Zbl
[92] -freeness of a class of linear delayed systems, European Control Conference, Brussels (1997)
[93] Motion planning for two classes of nonlinear systems with delays depending on the control, Control and Decision Conference, Tampa (1998), pp. 1007-1011
[94] Motion planning for heavy chain systems, SIAM J. Control and Optim., Volume 41 (2001) no. 2, pp. 475-495 | DOI
[95] Dynamics and solutions to some control problems for water-tank systems, IEEE Trans. Automatic Control, Volume 47 (2002) no. 4, pp. 594-609 | DOI | MR | Zbl
[96] A differential geometric setting for dynamic equivalence and dynamic linearization, Banach Center Publications, Volume 32 (1995), pp. 319-339 | DOI | MR | Zbl
[97] On dynamic feedback linearization of four-dimensional affine control systems with two inputs, ESAIM : Control, Optimisation and Calculus of Variations, Volume 2 (1997), pp. 151-230 | Numdam | MR | Zbl
[98] A necessary condition for dynamic equivalence, SIAM J. Control Optimization, Volume 48 (2009), pp. 925-940 | DOI | MR | Zbl
[99] Systems of partial differential equations and lie pseudogroups, Gordon & Breach, N.Y., 1978
[100] Dualité différentielle et applications, C.R. Acad. Sci. Paris, Série I, Volume 320 (1995), pp. 1225-1230 | MR | Zbl
[101] Computation of bases of free modules over the Weyl algebras, Journal of Symbolic Computation, Volume 42 (2007), pp. 1113-1141 | DOI | MR | Zbl
[102] Commandes optimales en temps pour les systèmes différentiellement plats, Ph. D. Thesis, Université des Sciences et Technologies de Lille (1997)
[103] Dévissage Gevrey, Astérisque, Volume 59-60 (1978), pp. 173-204 | Numdam | Zbl
[104] Séries divergentes et théories asymptotiques, Séries divergentes et procédés de resommation (Journées X-UPS), Éditions de l’École polytechnique, Palaiseau, 1991, pp. 1-73 | DOI
[105] Séries divergentes et théories asymptotiques, Panoramas et Synthèses, Société Mathématique de France, 1993 (voir aussi [104]) | DOI | MR | Zbl
[106] Configuration flatness of Lagrangian systems underactuated by one control, SIAM J. Control Optimization, Volume 36 (1998) no. 1, pp. 164-179 | DOI | MR | Zbl
[107] Dynamique générale des vibrations, Masson, Paris, 1971
[108] Flatness based control of a nonlinear chemical reactor model, Automatica, Volume 32 (1996), pp. 1433-1439 | DOI | MR | Zbl
[109] Necessary condition and genericity of dynamic feedback linearization, J. Math. Systems Estim. Control, Volume 5 (1995) no. 3, pp. 345-358 | MR
[110] Control of a quantum particle in a moving potential well, IFAC 2nd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003)
[111] Quantum systems and control, ARIMA Rev. Afr. Rech. Inform. Math. Appl., Volume 9 (2008), pp. 325-357 | DOI | MR
[112] Flatness and motion planning : the car with -trailers, Proc. ECC’93, Groningen (1993), pp. 1518-1522
[113] Flatness, motion planning and trailer systems, Proc. of the nd IEEE Conf. on Decision and Control, San Antonio (1993), pp. 2700-2705 | MR
[114] Réacteurs chimiques différentiellement plats : planification et suivi de trajectoires, Commande de procédés chimiques : réacteurs et colonnes de distillation (Traité IC2), Hermès, Paris (2001), pp. 163-200
[115] Flatness based control of distributed parameter systems, Shaker, Germany, 2003
[116] Construction of flat output by reduction and elimination, 7th IFAC Symposium on Nonlinear Control Systems, Pretoria (2007), pp. 666-671
[117] Planification de mouvements sans collision pour systèmes non holonomes, Ph. D. Thesis, LAAS-CNRS, Toulouse (1996) | DOI
[118] Differentially flat systems, CRC, 2004 | DOI | Zbl
[119] Exact linearzation in switched-mode DC-to-DC power converters, Int. J. Control, Volume 50 (1989), pp. 511-524 | DOI | MR | Zbl
[120] Absolute equivalence and its application to control theory, Ph. D. Thesis, University of Waterloo, Ontario (1992) | DOI | MR | Zbl
[121] A necessary condition for dynamic feedback linearization, Systems Control Letters, Volume 21 (1993), pp. 277-283 | DOI | MR | Zbl
[122] Mathematical control theory, Springer Verlag, 1990 | DOI | MR | Zbl
[123] Controllability of nonlinear systems, J. Differential Equations, Volume 12 (1972), pp. 95-116 | DOI | MR | Zbl
[124] Équations fonctionnelles, Masson et Cie, Editeurs, Paris, 1950
[125] A treatrise of the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1944
[126] Geometrical aspects of partial differential equations, World Scientific, Singapore, 1992
Cité par Sources :