Nous nous intéressons à de grands arbres aléatoires qui décrivent la généalogie d’une population se reproduisant de manière asexuée. Ce modèle a été introduit à la fin du xixe siècle par Bienaymé et Galton & Watson pour prédire l’extinction des noms nobles en Angleterre. En n’utilisant essentiellement que des outils au programme des classes préparatoires scientifiques, nous étudions la géométrie de ces arbres en les codant par des marches aléatoires conditionnées, que nous analysons à leur tour en utilisant des arguments combinatoires et analytiques.
@incollection{XUPS_2016____1_0, author = {Kortchemski, Igor}, title = {Arbres et marches al\'eatoires}, booktitle = {Arbres et marches al\'eatoires}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {1--57}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2016}, doi = {10.5802/xups.2016-01}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/xups.2016-01/} }
Kortchemski, Igor. Arbres et marches aléatoires. Journées mathématiques X-UPS, Arbres et marches aléatoires (2016), pp. 1-57. doi : 10.5802/xups.2016-01. http://archive.numdam.org/articles/10.5802/xups.2016-01/
[AB12] Tail bounds for the height and width of a random tree with a given degree sequence, Random Structures Algorithms, Volume 41 (2012) no. 2, pp. 253-261 | DOI | MR | Zbl
[AB19] A probabilistic approach to block sizes in random maps, ALEA Lat. Am. J. Probab. Math. Stat., Volume 16 (2019) no. 1, pp. 1-13 | DOI | MR | Zbl
[AD14a] Local limits of conditioned Galton-Watson trees : the infinite spine case, Electron. J. Probab., Volume 19 (2014), 2, 19 pages | DOI | MR | Zbl
[AD14b] Local limits of conditioned Galton-Watson trees : the condensation case, Electron. J. Probab., Volume 19 (2014), 56, 29 pages | DOI | MR | Zbl
[Ald91a] The continuum random tree. I, Ann. Probab., Volume 19 (1991) no. 1, pp. 1-28 | DOI | MR | Zbl
[Ald91b] The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990) (London Math. Soc. Lecture Note Ser.), Volume 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23-70 | DOI | MR | Zbl
[Ald93] The continuum random tree III, Ann. Probab., Volume 21 (1993) no. 1, pp. 248-289 | MR | Zbl
[AM08] Some families of increasing planar maps, Electron. J. Probab., Volume 13 (2008), 56 | DOI | MR | Zbl
[AN72] Branching processes, Grundlehren Math. Wissen., 196, Springer-Verlag, New York, 1972 | DOI | MR
[Bac11] A short history of mathematical population dynamics, Springer-Verlag London, Ltd., London, 2011 | DOI | MR
[Bet15] Scaling limit of random planar quadrangulations with a boundary, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015) no. 2, pp. 432-477 | DOI | Numdam | MR | Zbl
[BFSS01] Random maps, coalescing saddles, singularity analysis, and Airy phenomena, Random Structures Algorithms, Volume 19 (2001) no. 3-4, pp. 194-246 | DOI | MR | Zbl
[Bie45] De la loi de multiplication et de la durée des familles : probabilités, Société philomathique de Paris (1845)
[BK00] A random walk approach to Galton-Watson trees, J. Theoret. Probab., Volume 13 (2000) no. 3, pp. 777-803 | DOI | MR | Zbl
[BM14] Asymptotics of trees with a prescribed degree sequence and applications, Random Structures Algorithms, Volume 44 (2014) no. 3, pp. 290-316 | DOI | MR | Zbl
[Car16] The scaling limit of random outerplanar maps, Ann. Inst. H. Poincaré Probab. Statist., Volume 52 (2016) no. 4, pp. 1667-1686 | DOI | MR | Zbl
[CHK15a] The CRT is the scaling limit of random dissections, Random Structures Algorithms, Volume 47 (2015) no. 2, pp. 304-327 | DOI | MR | Zbl
[CHK15b] The CRT is the scaling limit of random dissections, Random Structures Algorithms, Volume 47 (2015) no. 2, pp. 304-327 | DOI | MR | Zbl
[CK14a] Random non-crossing plane configurations : a conditioned Galton-Watson tree approach, Random Structures Algorithms, Volume 45 (2014) no. 2, pp. 236-260 | DOI | MR | Zbl
[CK14b] Random stable looptrees, Electron. J. Probab., Volume 19 (2014), 108, 35 pages | DOI | MR | Zbl
[CK15] Percolation on random triangulations and stable looptrees, Probab. Theory Related Fields, Volume 163 (2015) no. 1-2, pp. 303-337 | DOI | MR | Zbl
[Dev12] Simulating size-constrained Galton-Watson trees, SIAM J. Comput., Volume 41 (2012) no. 1, pp. 1-11 | DOI | MR | Zbl
[DLG02] Random trees, Lévy processes and spatial branching processes, Astérisque, 281, Société Mathématique de France, Paris, 2002 | Numdam | MR
[DLG05] Probabilistic and fractal aspects of Lévy trees, Probab. Theory Related Fields, Volume 131 (2005) no. 4, pp. 553-603 | DOI | MR | Zbl
[Drm09] Random trees, Springer Wien, NewYork, Vienna, 2009 | DOI | MR
[Duq03] A limit theorem for the contour process of conditioned Galton-Watson trees, Ann. Probab., Volume 31 (2003) no. 2, pp. 996-1027 | DOI | MR | Zbl
[DZ86] Ordered trees and noncrossing partitions, Discrete Math., Volume 62 (1986) no. 2, pp. 215-218 | DOI | MR | Zbl
[EPW06] Rayleigh processes, real trees, and root growth with re-grafting, Probab. Theory Related Fields, Volume 134 (2006) no. 1, pp. 81-126 | DOI | MR | Zbl
[GK99] The Galton-Watson tree conditioned on its height, Probability theory and mathematical statistics. Proc. 7th intern. Vilnius conference (Vilnius, August 1998, TEV, Vilnius ; VSP, Utrecht, 1999, pp. 277-286 | Zbl
[Gou08] Les maths en tête : Analyse, Ellipses Marketing, Paris, 2008
[Gro81] Groups of polynomial growth and expanding maps, Publ. Math. Inst. Hautes Études Sci. (1981) no. 53, pp. 53-73 | DOI | Numdam | MR | Zbl
[Har52] First passage and recurrence distributions, Trans. Amer. Math. Soc., Volume 73 (1952), pp. 471-486 | DOI | MR | Zbl
[HM12] Scaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees, Ann. Probab., Volume 40 (2012), pp. 2589-2666 | MR | Zbl
[HS72] Studies in the history of probability and statistics. XXXI. The simple branching process, a turning point test and a fundamental inequality : a historical note on I. J. Bienaymé, Biometrika, Volume 59 (1972), pp. 680-683 | MR
[Jan12] Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation, Probab. Surv., Volume 9 (2012), pp. 103-252 | DOI | MR | Zbl
[JS11] Condensation in nongeneric trees, J. Stat. Phys., Volume 142 (2011) no. 2, pp. 277-313 | DOI | MR | Zbl
[JS15] Scaling limits of random planar maps with a unique large face, Ann. Probab., Volume 43 (2015) no. 3, pp. 1045-1081 | DOI | MR | Zbl
[Ken75a] The genealogy of genealogy : branching processes before (and after) 1873, Bull. London Math. Soc., Volume 7 (1975) no. 3, pp. 225-253 (avec un appendice en français contenant l’article de 1845 de Bienaymé) | DOI | MR | Zbl
[Ken75b] The Galton-Watson process conditioned on the total progeny, J. Appl. Probability, Volume 12 (1975) no. 4, pp. 800-806 | DOI | MR | Zbl
[Kes86] Subdiffusive behavior of random walk on a random cluster, Ann. Inst. H. Poincaré Probab. Statist., Volume 22 (1986) no. 4, pp. 425-487 | Numdam | MR | Zbl
[KM16] Triangulating stable laminations, Electron. J. Probab., Volume 21 (2016), 11, 31 pages | DOI | MR | Zbl
[KM17] Simply generated non-crossing partitions, Combin. Probab. Comput., Volume 26 (2017) no. 4, pp. 560-592 | DOI | MR | Zbl
[Kol86] Random mappings, Translation Series in Math. and Engineering, Optimization Software, Inc., New York, 1986 | MR
[Kor12] Invariance principles for Galton-Watson trees conditioned on the number of leaves, Stochastic Process. Appl., Volume 122 (2012) no. 9, pp. 3126-3172 | DOI | MR | Zbl
[Kor14] Random stable laminations of the disk, Ann. Probab., Volume 42 (2014) no. 2, pp. 725-759 | MR | Zbl
[Kor15] Limit theorems for conditioned non-generic Galton-Watson trees, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015) no. 2, pp. 489-511 | DOI | Numdam | MR | Zbl
[Kre72] Sur les partitions non croisées d’un cycle, Discrete Math., Volume 1 (1972) no. 4, pp. 333-350 | DOI | MR | Zbl
[Kri05] Uniform infinite planar triangulation and related time-reversed critical branching process, J. Math. Sci., Volume 131 (2005) no. 2, pp. 5520-5537 | DOI
[LG10] Itô’s excursion theory and random trees, Stochastic Process. Appl., Volume 120 (2010) no. 5, pp. 721-749 | DOI | MR | Zbl
[LG14] Random geometry on the sphere, Proceedings of the ICM 2014, Kyung Moon Sa, Seoul, 2014, pp. 421-442 (http://www.icm2014.org/download/Proceedings_Volume_I.pdf) | Zbl
[LGLJ98] Branching processes in Lévy processes : the exploration process, Ann. Probab., Volume 26 (1998) no. 1, pp. 213-252 | DOI | MR | Zbl
[LP16] Probability on trees and networks, Cambridge Series in Statistical and Probabilistic Math., 42, Cambridge University Press, New York, 2016 | DOI
[McC06] Noncrossing partitions in surprising locations, Amer. Math. Monthly, Volume 113 (2006) no. 7, pp. 598-610 | DOI | MR | Zbl
[MM78] On the altitude of nodes in random trees, Canad. J. Math., Volume 30 (1978) no. 5, pp. 997-1015 | DOI | MR | Zbl
[MP02] Noncrossing trees are almost conditioned Galton-Watson trees, Random Structures Algorithms, Volume 20 (2002) no. 1, pp. 115-125 | DOI | MR | Zbl
[MS21] An axiomatic characterization of the Brownian map, J. Éc. polytech. Math., Volume 8 (2021), pp. 609-731 | DOI | Numdam | MR | Zbl
[Nev86] Arbres et processus de Galton-Watson, Ann. Inst. H. Poincaré Probab. Statist., Volume 22 (1986) no. 2, pp. 199-207 | Numdam | MR | Zbl
[Pau89] The Gromov topology on -trees, Topology Appl., Volume 32 (1989) no. 3, pp. 197-221 | DOI | MR | Zbl
[PS18] Scaling limits of random Pólya trees, Probab. Theory Related Fields, Volume 170 (2018) no. 3-4, pp. 801-820 | DOI | MR | Zbl
[PSW16] Scaling limits of random graphs from subcritical classes, Ann. Probab., Volume 44 (2016) no. 5, pp. 3291-3334 | DOI | MR | Zbl
[Riz15] Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015) no. 2, pp. 512-532 | DOI | Numdam | MR | Zbl
[Spi76] Principles of random walk, Graduate Texts in Math., 34, Springer-Verlag, New York-Heidelberg, 1976 | DOI | MR
[Ste30] Om Sandsynligheden for at Afkommet uddør, Matematisk tidsskrift. B (1930), pp. 19-23 http://www.jstor.org/stable/24529732 | Zbl
[WG75] On the probability of the extinction of families, The Journal of the Anthropological Institute of Great Britain and Ireland, Volume 4 (1875), pp. 138-144 http://www.jstor.org/stable/2841222 | DOI
Cité par Sources :