@incollection{MSMF_1979__59__55_0, author = {Gross, Herbert}, title = {Formes quadratiques et formes non traciques sur les espaces de dimension d\'enombrable}, booktitle = {Colloque sur les formes quadratiques (Montpellier, 1977)}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, pages = {55--68}, publisher = {Soci\'et\'e math\'ematique de France}, number = {59}, year = {1979}, doi = {10.24033/msmf.248}, mrnumber = {82c:15028}, zbl = {0433.15013}, url = {https://www.numdam.org/articles/10.24033/msmf.248/} }
TY - CHAP AU - Gross, Herbert TI - Formes quadratiques et formes non traciques sur les espaces de dimension dénombrable BT - Colloque sur les formes quadratiques (Montpellier, 1977) AU - Collectif T3 - Mémoires de la Société Mathématique de France PY - 1979 SP - 55 EP - 68 IS - 59 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/msmf.248/ DO - 10.24033/msmf.248 ID - MSMF_1979__59__55_0 ER -
%0 Book Section %A Gross, Herbert %T Formes quadratiques et formes non traciques sur les espaces de dimension dénombrable %B Colloque sur les formes quadratiques (Montpellier, 1977) %A Collectif %S Mémoires de la Société Mathématique de France %D 1979 %P 55-68 %N 59 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/msmf.248/ %R 10.24033/msmf.248 %F MSMF_1979__59__55_0
Gross, Herbert. Formes quadratiques et formes non traciques sur les espaces de dimension dénombrable, dans Colloque sur les formes quadratiques (Montpellier, 1977), Mémoires de la Société Mathématique de France, no. 59 (1979), pp. 55-68. doi : 10.24033/msmf.248. https://www.numdam.org/articles/10.24033/msmf.248/
[1] A modular topological lattice, Pacific J. Math. 29 (1969) 271-277. | MR | Zbl
,[2] Isomorphisms between lattices of linear subspaces which are induced by isometries. J. of Algebra, 49 (1977) 342-356. | MR | Zbl
,[3] Untersuchunger über quadratische Formen in Körpern der Characteristik zwei, J. reine und angew. Math., 297(1978) 80-91. | MR | Zbl
,[4] Bilinear forms on K-vectorspaces of denumerable dimension in the case of char(k) = 2, Comment. Math. Helv. 40(1966) 247-266. | MR | Zbl
and ,[5] On the non trace-valued forms, Advances in Math. à paraître. | Zbl
and ,- Lattices and infinite-dimensional forms. ?The Lattice Method?, Order, Volume 4 (1987) no. 3, p. 233 | DOI:10.1007/bf00337887
- Lattice problems originating in quadratic space theory, Algebra Universalis, Volume 20 (1985) no. 3, p. 267 | DOI:10.1007/bf01195138
- Subspaces in Non-Trace-Valued Spaces, Quadratic Forms in Infinite Dimensional Vector Spaces, Volume 1 (1979), p. 169 | DOI:10.1007/978-1-4899-3542-7_9
- Subspaces in Non-Trace-Valued Spaces, Quadratic Forms in Infinite Dimensional Vector Spaces, Volume 1 (1979), p. 169 | DOI:10.1007/978-1-4757-1454-8_9
- Witts Theorem in Finite Dimensions, Quadratic Forms in Infinite Dimensional Vector Spaces, Volume 1 (1979), p. 375 | DOI:10.1007/978-1-4899-3542-7_16
- Witts Theorem in Finite Dimensions, Quadratic Forms in Infinite Dimensional Vector Spaces, Volume 1 (1979), p. 375 | DOI:10.1007/978-1-4757-1454-8_16
- Witt Decompositions for Hermitean אo-Forms, Quadratic Forms in Infinite Dimensional Vector Spaces, Volume 1 (1979), p. 96 | DOI:10.1007/978-1-4899-3542-7_4
Cité par 7 documents. Sources : Crossref