Coherence of 3-manifold fundamental groups
Séminaire Bourbaki : vol. 1975/76, exposés 471-488, Séminaire Bourbaki, no. 18 (1977), Talk no. 481, 7 p.
@incollection{SB_1975-1976__18__167_0,
     author = {Stallings, John},
     title = {Coherence of $3$-manifold fundamental groups},
     booktitle = {S\'eminaire Bourbaki : vol. 1975/76, expos\'es 471-488},
     series = {S\'eminaire Bourbaki},
     note = {talk:481},
     pages = {167--173},
     publisher = {Springer-Verlag},
     number = {18},
     year = {1977},
     mrnumber = {442915},
     zbl = {0388.20028},
     language = {en},
     url = {http://archive.numdam.org/item/SB_1975-1976__18__167_0/}
}
TY  - CHAP
AU  - Stallings, John
TI  - Coherence of $3$-manifold fundamental groups
BT  - Séminaire Bourbaki : vol. 1975/76, exposés 471-488
AU  - Collectif
T3  - Séminaire Bourbaki
N1  - talk:481
PY  - 1977
SP  - 167
EP  - 173
IS  - 18
PB  - Springer-Verlag
UR  - http://archive.numdam.org/item/SB_1975-1976__18__167_0/
LA  - en
ID  - SB_1975-1976__18__167_0
ER  - 
%0 Book Section
%A Stallings, John
%T Coherence of $3$-manifold fundamental groups
%B Séminaire Bourbaki : vol. 1975/76, exposés 471-488
%A Collectif
%S Séminaire Bourbaki
%Z talk:481
%D 1977
%P 167-173
%N 18
%I Springer-Verlag
%U http://archive.numdam.org/item/SB_1975-1976__18__167_0/
%G en
%F SB_1975-1976__18__167_0
Stallings, John. Coherence of $3$-manifold fundamental groups, in Séminaire Bourbaki : vol. 1975/76, exposés 471-488, Séminaire Bourbaki, no. 18 (1977), Talk no. 481, 7 p. http://archive.numdam.org/item/SB_1975-1976__18__167_0/

[1] G. Higman - Subgroups of finitely presented groups, Proc. Roy. Soc., Ser. A, 262 (1961), 455-475. | MR | Zbl

[2] P.J. Higgins - Grushko's theorem, J. Algebra, 4 (1966), 365-372. | MR | Zbl

[3] G.P. Scott - Finitely generated 3-manifold groups are finitely presented, J. London Math. Soc., (2) 6 (1973), 437-440. | MR | Zbl

[4] J. Stallings - A topological proof of Grushko's theorem on free products, Math. Z., 90 (1965), 1-8. | MR | Zbl

[5] G.A. Swarup - Finding incompressible surfaces in 3-manifolds, J. London Math. Soc., (2) 6 (1973), 441-452. | MR | Zbl