[Projectivité des variétés kählériennes - le problème de Kodaira]
Toute surface kählérienne compacte est déformation d’une surface projective. En particulier, topologiquement il n’y a pas de différence entre surfaces kählériennes et surfaces projectives. Kodaira avait demandé si ceci reste vrai en dimension supérieure. On expliquera la construction d’une série de contre-exemples dus à C. Voisin, qui construit des variétés kählériennes compactes de dimension dont le type d’homotopie rationnelle ne peut être celui d’une variété projective.
Every compact Kähler surface is deformation equivalent to a projective surface. In particular, topologically Kähler surfaces and projective surfaces cannot be distinguished. Kodaira had asked whether this continues to hold in higher dimensions. We explain the construction of a series of counter-examples due to C. Voisin, which yields compact Kähler manifolds of dimension at least four whose rational homotopy type is not realized by any projective manifold.
Keywords: homotopie des variétés kählériennes compactes
Mot clés : homotopy of compact Kähler manifolds
@incollection{SB_2005-2006__48__55_0, author = {Huybrechts, Daniel}, title = {Projectivity of {K\"ahler} manifolds - {Kodaira's~problem}}, booktitle = {S\'eminaire Bourbaki : volume 2005/2006, expos\'es 952-966}, series = {Ast\'erisque}, note = {talk:954}, pages = {55--74}, publisher = {Soci\'et\'e math\'ematique de France}, number = {311}, year = {2007}, zbl = {1194.32009}, language = {en}, url = {http://archive.numdam.org/item/SB_2005-2006__48__55_0/} }
TY - CHAP AU - Huybrechts, Daniel TI - Projectivity of Kähler manifolds - Kodaira's problem BT - Séminaire Bourbaki : volume 2005/2006, exposés 952-966 AU - Collectif T3 - Astérisque N1 - talk:954 PY - 2007 SP - 55 EP - 74 IS - 311 PB - Société mathématique de France UR - http://archive.numdam.org/item/SB_2005-2006__48__55_0/ LA - en ID - SB_2005-2006__48__55_0 ER -
%0 Book Section %A Huybrechts, Daniel %T Projectivity of Kähler manifolds - Kodaira's problem %B Séminaire Bourbaki : volume 2005/2006, exposés 952-966 %A Collectif %S Astérisque %Z talk:954 %D 2007 %P 55-74 %N 311 %I Société mathématique de France %U http://archive.numdam.org/item/SB_2005-2006__48__55_0/ %G en %F SB_2005-2006__48__55_0
Huybrechts, Daniel. Projectivity of Kähler manifolds - Kodaira's problem, dans Séminaire Bourbaki : volume 2005/2006, exposés 952-966, Astérisque, no. 311 (2007), Exposé no. 954, pp. 55-74. http://archive.numdam.org/item/SB_2005-2006__48__55_0/
[1] Algebra, Prentice Hall Inc., Englewood Cliffs, NJ, 1991. | MR | Zbl
-[2] “Real homotopy theory of Kähler manifolds”, Invent. Math. 29 (1975), no. 3, p. 245-274. | EuDML | MR | Zbl
, , , & -[3] “Complex analytic and algebraic geometry”, http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
-[4] Principles of algebraic geometry, Pure Appl. Math., John Wiley & Sons, New York, 1978. | MR | Zbl
& -[5] “An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures”, Ann. of Math. (2) 75 (1962), p. 190-208. | MR | Zbl
-[6] “On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties)”, Ann. of Math. (2) 60 (1954), p. 28-48. | MR | Zbl
-[7] -, “On compact analytic surfaces”, in Analytic functions, Princeton Univ. Press, Princeton, N.J., 1960, p. 121-135. | MR | Zbl
[8] -, “On compact complex analytic surfaces, I”, Ann. of Math. (2) 71 (1960), p. 111-152. | MR | Zbl
[9] “Bimeromorphic automorphism groups of non-projective hyperkähler manifolds - A note inspired by C.T. McMullen”, math.AG/0312515. | Zbl
-[10] “Stabilité de la classe des variétés kählériennes par certains morphismes propres”, Invent. Math. 77 (1984), no. 1, p. 117-127. | EuDML | MR | Zbl
-[11] “Hodge theory and the topology of compact Kähler and complex projective manifolds”, Lecture Notes for the Seattle AMS Summer Institute.
-[12] -, Théorie de Hodge et géométrie algébrique complexe, Cours spécialisés, vol. 10, Soc. Math. France, Paris, 2002. | MR | Zbl
[13] -, “On the homotopy types of compact Kähler and complex projective manifolds”, Invent. Math. 157 (2004), no. 2, p. 329-343. | MR | Zbl
[14] -, “On the homotopy types of Kähler manifolds and the birational Kodaira problem”, J. Differential Geom. 72 (2006), no. 1, p. 43-71. | MR | Zbl