Every compact Kähler surface is deformation equivalent to a projective surface. In particular, topologically Kähler surfaces and projective surfaces cannot be distinguished. Kodaira had asked whether this continues to hold in higher dimensions. We explain the construction of a series of counter-examples due to C. Voisin, which yields compact Kähler manifolds of dimension at least four whose rational homotopy type is not realized by any projective manifold.
Toute surface kählérienne compacte est déformation d’une surface projective. En particulier, topologiquement il n’y a pas de différence entre surfaces kählériennes et surfaces projectives. Kodaira avait demandé si ceci reste vrai en dimension supérieure. On expliquera la construction d’une série de contre-exemples dus à C. Voisin, qui construit des variétés kählériennes compactes de dimension dont le type d’homotopie rationnelle ne peut être celui d’une variété projective.
Keywords: homotopie des variétés kählériennes compactes
Mot clés : homotopy of compact Kähler manifolds
@incollection{SB_2005-2006__48__55_0, author = {Huybrechts, Daniel}, title = {Projectivity of {K\"ahler} manifolds - {Kodaira's~problem}}, booktitle = {S\'eminaire Bourbaki : volume 2005/2006, expos\'es 952-966}, series = {Ast\'erisque}, note = {talk:954}, pages = {55--74}, publisher = {Soci\'et\'e math\'ematique de France}, number = {311}, year = {2007}, zbl = {1194.32009}, language = {en}, url = {http://archive.numdam.org/item/SB_2005-2006__48__55_0/} }
TY - CHAP AU - Huybrechts, Daniel TI - Projectivity of Kähler manifolds - Kodaira's problem BT - Séminaire Bourbaki : volume 2005/2006, exposés 952-966 AU - Collectif T3 - Astérisque N1 - talk:954 PY - 2007 SP - 55 EP - 74 IS - 311 PB - Société mathématique de France UR - http://archive.numdam.org/item/SB_2005-2006__48__55_0/ LA - en ID - SB_2005-2006__48__55_0 ER -
%0 Book Section %A Huybrechts, Daniel %T Projectivity of Kähler manifolds - Kodaira's problem %B Séminaire Bourbaki : volume 2005/2006, exposés 952-966 %A Collectif %S Astérisque %Z talk:954 %D 2007 %P 55-74 %N 311 %I Société mathématique de France %U http://archive.numdam.org/item/SB_2005-2006__48__55_0/ %G en %F SB_2005-2006__48__55_0
Huybrechts, Daniel. Projectivity of Kähler manifolds - Kodaira's problem, in Séminaire Bourbaki : volume 2005/2006, exposés 952-966, Astérisque, no. 311 (2007), Talk no. 954, pp. 55-74. http://archive.numdam.org/item/SB_2005-2006__48__55_0/
[1] Algebra, Prentice Hall Inc., Englewood Cliffs, NJ, 1991. | MR | Zbl
-[2] “Real homotopy theory of Kähler manifolds”, Invent. Math. 29 (1975), no. 3, p. 245-274. | EuDML | MR | Zbl
, , , & -[3] “Complex analytic and algebraic geometry”, http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
-[4] Principles of algebraic geometry, Pure Appl. Math., John Wiley & Sons, New York, 1978. | MR | Zbl
& -[5] “An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures”, Ann. of Math. (2) 75 (1962), p. 190-208. | MR | Zbl
-[6] “On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties)”, Ann. of Math. (2) 60 (1954), p. 28-48. | MR | Zbl
-[7] -, “On compact analytic surfaces”, in Analytic functions, Princeton Univ. Press, Princeton, N.J., 1960, p. 121-135. | MR | Zbl
[8] -, “On compact complex analytic surfaces, I”, Ann. of Math. (2) 71 (1960), p. 111-152. | MR | Zbl
[9] “Bimeromorphic automorphism groups of non-projective hyperkähler manifolds - A note inspired by C.T. McMullen”, math.AG/0312515. | Zbl
-[10] “Stabilité de la classe des variétés kählériennes par certains morphismes propres”, Invent. Math. 77 (1984), no. 1, p. 117-127. | EuDML | MR | Zbl
-[11] “Hodge theory and the topology of compact Kähler and complex projective manifolds”, Lecture Notes for the Seattle AMS Summer Institute.
-[12] -, Théorie de Hodge et géométrie algébrique complexe, Cours spécialisés, vol. 10, Soc. Math. France, Paris, 2002. | MR | Zbl
[13] -, “On the homotopy types of compact Kähler and complex projective manifolds”, Invent. Math. 157 (2004), no. 2, p. 329-343. | MR | Zbl
[14] -, “On the homotopy types of Kähler manifolds and the birational Kodaira problem”, J. Differential Geom. 72 (2006), no. 1, p. 43-71. | MR | Zbl