The Hurwitz existence problem for surface branched covers
[The Hurwitz existence problem for surface branched covers]
Winter Braids X (Pisa, 2020), Winter Braids Lecture Notes (2020), Exposé no. 2, 43 p.

To a branched cover f:Σ ˜Σ between closed surfaces one can associate a combinatorial datum given by the topological types of Σ ˜ and Σ, the degree d of f, the number n of branching points of f, and the n partitions of d given by the local degrees of f at the preimages of the branching points. This datum must satisfy the Riemann-Hurwitz condition plus some extra ones if either Σ or both Σ and Σ ˜ are non-orientable. A very old question posed by Hurwitz [14] in 1891 asks whether a combinatorial datum satisfying these necessary conditions is actually realizable (namely, associated to some existing f) or not (in which case it is called exceptional). Or, more generally, to count the number of realizations of the datum up to a natural equivalence relation. Many partial answers have been given to the Hurwitz problem over the time, but a complete solution is still missing. In this short course we will report on ancient and recent results and techniques employed to attack the question.

DOI : 10.5802/wbln.34
Classification : 57M12
Petronio, Carlo 1

1 Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
@article{WBLN_2020__7__A2_0,
     author = {Petronio, Carlo},
     title = {The {Hurwitz} existence problem for surface branched covers},
     booktitle = {Winter Braids X (Pisa, 2020)},
     series = {Winter Braids Lecture Notes},
     note = {talk:2},
     pages = {1--43},
     publisher = {Winter Braids School},
     year = {2020},
     doi = {10.5802/wbln.34},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/wbln.34/}
}
TY  - JOUR
AU  - Petronio, Carlo
TI  - The Hurwitz existence problem for surface branched covers
BT  - Winter Braids X (Pisa, 2020)
AU  - Collectif
T3  - Winter Braids Lecture Notes
N1  - talk:2
PY  - 2020
SP  - 1
EP  - 43
PB  - Winter Braids School
UR  - http://archive.numdam.org/articles/10.5802/wbln.34/
DO  - 10.5802/wbln.34
LA  - en
ID  - WBLN_2020__7__A2_0
ER  - 
%0 Journal Article
%A Petronio, Carlo
%T The Hurwitz existence problem for surface branched covers
%B Winter Braids X (Pisa, 2020)
%A Collectif
%S Winter Braids Lecture Notes
%Z talk:2
%D 2020
%P 1-43
%I Winter Braids School
%U http://archive.numdam.org/articles/10.5802/wbln.34/
%R 10.5802/wbln.34
%G en
%F WBLN_2020__7__A2_0
Petronio, Carlo. The Hurwitz existence problem for surface branched covers, dans Winter Braids X (Pisa, 2020), Winter Braids Lecture Notes (2020), Exposé no. 2, 43 p. doi : 10.5802/wbln.34. http://archive.numdam.org/articles/10.5802/wbln.34/

[1] K. Barański, On realizability of branched coverings of the sphere, Topology Appl. 116 (2001), 279–291. | DOI | MR | Zbl

[2] I. Berstein – A. L. Edmonds, On the classification of generic branched coverings of surfaces, Illinois J. Math. 28 (1984), 64–82. | DOI | MR | Zbl

[3] G. Boccara, Cycles comme produit de deux permutations de classes données (French), Discrete Math. 38 (1982), 129–142. | DOI | MR | Zbl

[4] S. Bogatyi – D. L. Gonçalves – E. Kudryavtseva – H. Zieschang, Realization of primitive branched coverings over closed surfaces following the Hurwitz approach, Cent. Eur. J. Math. 1 (2003), 184–197. | DOI | MR | Zbl

[5] P. B. Cohen (now P. Tretkoff), Dessins d’enfant and Shimura varieties, In: “The Grothendieck Theory of Dessins d’Enfants,” (L. Schneps, ed.), London Math. Soc. Lecture Notes Series, Vol. 200, Cambridge University Press, 1994, pp. 237-243. | DOI | Zbl

[6] P. Corvaja – C. Petronio – U. Zannier, On certain permutation groups and sums of two squares, Elem. Math. 67 (2012), 169-181. | DOI | MR | Zbl

[7] P. Corvaja – U. Zannier, On the existence of covers of 1 associated to certain permutations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 289–296. | DOI | MR | Zbl

[8] A. L. Edmonds – R. S. Kulkarni – R. E. Stong, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc. 282 (1984), 773-790. | DOI | MR | Zbl

[9] C. L. Ezell, Branch point structure of covering maps onto nonorientable surfaces, Trans. Amer. Math. Soc. 243 (1978), 123–133. | DOI | MR | Zbl

[10] T. Ferragut – C. Petronio, Elementary solution of an infinite sequence of instances of the Hurwitz problem, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29 (2018), 297–307. | DOI | MR | Zbl

[11] S. M. Gersten, On branched covers of the 2-sphere by the 2-sphere, Proc. Amer. Math. Soc. 101 (1987), 761–766. | DOI | MR | Zbl

[12] I. P. Goulden – J. H. Kwak – J. Lee, Distributions of regular branched surface coverings, European J. Combin. 25 (2004), 437-455. | DOI | MR | Zbl

[13] A. Grothendieck, Esquisse d’un programme (1984). In: “Geometric Galois Action” (L. Schneps, P. Lochak eds.), 1: “Around Grothendieck’s Esquisse d’un Programme,” London Math. Soc. Lecture Notes Series, Vol. 242, Cambridge Univ. Press, 1997, pp. 5-48. | DOI | Zbl

[14] A. Hurwitz, Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten (German), Math. Ann. 39 (1891), 1–60. | Zbl

[15] D. H. Husemoller, Ramified coverings of Riemann surfaces, Duke Math. J. 29 (1962), 167–174. | DOI | MR | Zbl

[16] I. Izmestiev – R. B. Kusner – G. Rote – B. Springborn – J. M. Sullivan, There is no triangulation of the torus with vertex degrees 5,6,...,6,7 and related results: geometric proofs for combinatorial theorems, Geom. Dedicata 166 (2013), 15-29. | DOI | MR | Zbl

[17] S. K. Lando – A. K. Zvonkin, “Graphs on Surfaces and their Applications,” Encyclopaedia Math. Sci. Vol. 141, Springer, Berlin, 2004. | DOI | Zbl

[18] A. G. Khovanskii – S. Zdravkovska, Branched covers of S 2 and braid groups, J. Knot Theory Ramifications 5 (1996), 55–75. | DOI | Zbl

[19] J. H. Kwak, A. Mednykh, Enumerating branched coverings over surfaces with boundaries, European J. Combin. 25 (2004), 23-34. | DOI | MR | Zbl

[20] J. H. Kwak, A. Mednykh, Enumeration of branched coverings of closed orientable surfaces whose branch orders coincide with multiplicity, Studia Sci. Math. Hungar. 44 (2007), 215-223. | DOI | MR | Zbl

[21] J. H. Kwak, A. Mednykh, V. Liskovets, Enumeration of branched coverings of nonorientable surfaces with cyclic branch points, SIAM J. Discrete Math. 19 (2005), 388-398. | DOI | MR | Zbl

[22] A. D. Mednykh, On the solution of the Hurwitz problem on the number of nonequivalent coverings over a compact Riemann surface (Russian), Dokl. Akad. Nauk SSSR 261 (1981), 537-542.

[23] A. D. Mednykh, Nonequivalent coverings of Riemann surfaces with a prescribed ramification type (Russian), Sibirsk. Mat. Zh. 25 (1984), 120-142. | DOI | MR | Zbl

[24] S. Monni, J. S. Song, Y. S. Song, The Hurwitz enumeration problem of branched covers and Hodge integrals, J. Geom. Phys. 50 (2004), 223-256. | DOI | MR | Zbl

[25] F. Pakovich, Solution of the Hurwitz problem for Laurent polynomials, J. Knot Theory Ramifications 18 (2009), 271-302. | DOI | MR | Zbl

[26] F. Pakovich – A. K. Zvonkin, Minimum degree of the difference of two polynomials over , and weighted plane trees, Selecta Math. (N.S.) 20 (2014), 1003–1065. | DOI | MR | Zbl

[27] M. A. Pascali – C. Petronio, Surface branched covers and geometric 2-orbifolds, Trans. Amer. Math. Soc. 361 (2009), 5885-5920 | DOI | MR | Zbl

[28] M. A. Pascali – C. Petronio, Branched covers of the sphere and the prime-degree conjecture, Ann. Mat. Pura Appl. 191 (2012), 563-594. | DOI | MR | Zbl

[29] E. Pervova – C. Petronio, On the existence of branched coverings between surfaces with prescribed branch data. I, Algebr. Geom. Topol. 6 (2006), 1957–1985. | DOI | MR | Zbl

[30] E. Pervova – C. Petronio, On the existence of branched coverings between surfaces with prescribed branch data. II, J. Knot Theory Ramifications 17 (2008), 787–816. | DOI | MR | Zbl

[31] C. Petronio, Explicit computation of some families of Hurwitz numbers, European J. Combin. 75 (2018), 136-151. | DOI | MR | Zbl

[32] C. Petronio, Explicit computation of some families of Hurwitz numbers. II, Adv. Geom. 20 (2020), 483-498. | DOI | MR | Zbl

[33] C. Petronio, Realizations of certain odd-degree surface branch data, Rend. Istit. Mat. Univ. Trieste 52 (2020), 355-379. | Zbl

[34] C. Petronio – F. Sarti, Counting surface branched covers, Studia Sci. Math. Hungar. 56 (2019), 309-322. | DOI | MR | Zbl

[35] J. Song – B. Xu, On rational functions with more than three branch points, Algebra Colloq. 27 (2020), 231-246. | DOI | MR | Zbl

[36] R. Thom, L’équivalence d’une fonction différentiable et d’un polynôme (French), Topology 3 (1965), no. suppl, suppl. 2, 297–307. | DOI

[37] U. Zannier, On Davenport’s bound for the degree of f 3 -g 2 and Riemann’s existence theorem, Acta Arith. 71 (1995), 107–137. | DOI | MR | Zbl

[38] H. Zheng, Realizability of branched coverings of S 2 , Topology Appl. 153 (2006), 2124–2134. | DOI | Zbl

[39] M. Zieve, Private communication, 2019.

Cité par Sources :