Note sur la série n=1xnns
Bulletin de la Société Mathématique de France, Tome 17 (1889), pp. 142-152.
@article{BSMF_1889__17__142_1,
     author = {Jonqui\`ere, A.},
     title = {Note sur la s\'erie $\sum _{n=1}^{\infty } \frac{x^n}{n^s}$},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {142--152},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {17},
     year = {1889},
     doi = {10.24033/bsmf.392},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/bsmf.392/}
}
TY  - JOUR
AU  - Jonquière, A.
TI  - Note sur la série $\sum _{n=1}^{\infty } \frac{x^n}{n^s}$
JO  - Bulletin de la Société Mathématique de France
PY  - 1889
SP  - 142
EP  - 152
VL  - 17
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.392/
DO  - 10.24033/bsmf.392
LA  - fr
ID  - BSMF_1889__17__142_1
ER  - 
%0 Journal Article
%A Jonquière, A.
%T Note sur la série $\sum _{n=1}^{\infty } \frac{x^n}{n^s}$
%J Bulletin de la Société Mathématique de France
%D 1889
%P 142-152
%V 17
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.392/
%R 10.24033/bsmf.392
%G fr
%F BSMF_1889__17__142_1
Jonquière, A. Note sur la série $\sum _{n=1}^{\infty } \frac{x^n}{n^s}$. Bulletin de la Société Mathématique de France, Tome 17 (1889), pp. 142-152. doi : 10.24033/bsmf.392. https://www.numdam.org/articles/10.24033/bsmf.392/
  • Wang, Kun; Lu, Zhaolian; Yao, Zeqi; He, Xionglei; Hu, Zheng; Zhou, Da Single-cell phylodynamic inference of stem cell differentiation and tumor evolution, Cell Systems (2025), p. 101244 | DOI:10.1016/j.cels.2025.101244
  • Genčev, Marian Generalized Mneimneh sums and their application to multiple polylogarithms, Discrete Mathematics, Volume 348 (2025) no. 2, p. 114318 | DOI:10.1016/j.disc.2024.114318
  • Sofo, Anthony; Pain, Jean-Christophe; Scharaschkin, Victor A family of polylogarithmic integrals, Journal of Applied Analysis (2025) | DOI:10.1515/jaa-2024-0133
  • Dahne, Joel Highest cusped waves for the fractional KdV equations, Journal of Differential Equations, Volume 401 (2024), p. 550 | DOI:10.1016/j.jde.2024.05.016
  • Akemann, Gernot; Byun, Sung-Soo; Ebke, Markus; Schehr, Grégory Universality in the number variance and counting statistics of the real and symplectic Ginibre ensemble, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 49, p. 495202 | DOI:10.1088/1751-8121/ad0885
  • Pepino, Rafael Tristão Acceleration of sequences with transformations involving hypergeometric functions, Numerical Algorithms, Volume 92 (2023) no. 1, p. 893 | DOI:10.1007/s11075-022-01334-7
  • Liu, Yiqun; Zhai, Liangjun; Yan, Songsong; Wang, Di; Wan, Xiangang Magnon-magnon interaction in monolayer MnBi2Te4, Physical Review B, Volume 108 (2023) no. 17 | DOI:10.1103/physrevb.108.174425
  • Kato, Masaki Parity result for q- and elliptic analogues of multiple polylogarithms, Research in Number Theory, Volume 9 (2023) no. 2 | DOI:10.1007/s40993-023-00452-y
  • Schoger, Tanja; Spreng, Benjamin; Ingold, Gert-Ludwig; Maia Neto, Paulo A. Casimir effect between spherical objects: Proximity-force approximation and beyond using plane waves, International Journal of Modern Physics A, Volume 37 (2022) no. 19 | DOI:10.1142/s0217751x22410093
  • Schenk, Hermann A.G.; Melnikov, Anton; Wall, Franziska; Gaudet, Matthieu; Stolz, Michael; Schuffenhauer, David; Kaiser, Bert Electrically Actuated Microbeams: An Explicit Calculation of the Coulomb Integral in the Entire Stable and Unstable Regimes Using a Chebyshev-Edgeworth Approach, Physical Review Applied, Volume 18 (2022) no. 1 | DOI:10.1103/physrevapplied.18.014059
  • Lee, Dae Sik; Kim, Hye Kyung On the new type of degenerate poly-Genocchi numbers and polynomials, Advances in Difference Equations, Volume 2020 (2020) no. 1 | DOI:10.1186/s13662-020-02886-5
  • Kim, Hye Kyung; Jang, Lee-Chae A note on degenerate poly-Genocchi numbers and polynomials, Advances in Difference Equations, Volume 2020 (2020) no. 1 | DOI:10.1186/s13662-020-02847-y
  • Calixto, M; Maldonado, D; Miranda, E; Roldán, J B Modeling of the temperature effects in filamentary-type resistive switching memories using quantum point-contact theory, Journal of Physics D: Applied Physics, Volume 53 (2020) no. 29, p. 295106 | DOI:10.1088/1361-6463/ab85e5
  • Gerhold, Stefan; Tomovski, Živorad Asymptotic expansion of Mathieu power series and trigonometric Mathieu series, Journal of Mathematical Analysis and Applications, Volume 479 (2019) no. 2, p. 1882 | DOI:10.1016/j.jmaa.2019.07.029
  • Destuynder, Philippe; Fabre, Caroline Singularities Occuring in a Bimaterial with Transparent Boundary Conditions, Mathematics, Informatics, and Their Applications in Natural Sciences and Engineering, Volume 276 (2019), p. 79 | DOI:10.1007/978-3-030-10419-1_5
  • del Campo, Adolfo Universal Statistics of Topological Defects Formed in a Quantum Phase Transition, Physical Review Letters, Volume 121 (2018) no. 20 | DOI:10.1103/physrevlett.121.200601
  • Min, Jeongwon Mean values of the Witten L-function for SU(2), Forum Mathematicum, Volume 29 (2017) no. 2, p. 457 | DOI:10.1515/forum-2015-0056
  • Oswald, Nicola; Steuding, Jörn Aspects of Zeta-Function Theory in the Mathematical Works of Adolf Hurwitz, From Arithmetic to Zeta-Functions (2016), p. 309 | DOI:10.1007/978-3-319-28203-9_20
  • Lagarias, Jeffrey C.; Li, Wen-Ching Winnie The Lerch Zeta function III. Polylogarithms and special values, Research in the Mathematical Sciences, Volume 3 (2016) no. 1 | DOI:10.1186/s40687-015-0049-2
  • Eckstein, Michał; Zając, Artur Asymptotic and Exact Expansions of Heat Traces, Mathematical Physics, Analysis and Geometry, Volume 18 (2015) no. 1 | DOI:10.1007/s11040-015-9197-2
  • Agnese, C.; Baiamonte, G.; Cammalleri, C. Modelling the occurrence of rainy days under a typical Mediterranean climate, Advances in Water Resources, Volume 64 (2014), p. 62 | DOI:10.1016/j.advwatres.2013.12.005
  • Svensson, Tomas; Vynck, Kevin; Adolfsson, Erik; Farina, Andrea; Pifferi, Antonio; Wiersma, Diederik S. Light diffusion in quenched disorder: Role of step correlations, Physical Review E, Volume 89 (2014) no. 2 | DOI:10.1103/physreve.89.022141
  • Genty, Alain; Pot, Valérie Numerical Simulation of 3D Liquid–Gas Distribution in Porous Media by a Two-Phase TRT Lattice Boltzmann Method, Transport in Porous Media, Volume 96 (2013) no. 2, p. 271 | DOI:10.1007/s11242-012-0087-9
  • Condon, John D. Asymptotic expansion of the difference of two Mahler measures, Journal of Number Theory, Volume 132 (2012) no. 9, p. 1962 | DOI:10.1016/j.jnt.2012.02.022
  • Jung, Jesper; Pedersen, Thomas G. Polarizability of nanowires at surfaces: exact solution for general geometry, Optics Express, Volume 20 (2012) no. 4, p. 3663 | DOI:10.1364/oe.20.003663
  • Giuggioli, L.; Potts, J. R.; Harris, S. Brownian walkers within subdiffusing territorial boundaries, Physical Review E, Volume 83 (2011) no. 6 | DOI:10.1103/physreve.83.061138
  • Fermi, Davide; Pizzocchero, Livio Local Zeta Regularization and the Casimir Effect, Progress of Theoretical Physics, Volume 126 (2011) no. 3, p. 419 | DOI:10.1143/ptp.126.419
  • Eisinberg, A.; Fedele, G.; Ferrise, A.; Frascino, D. On an integral representation of a class of Kapteyn (Fourier–Bessel) series: Kepler’s equation, radiation problems and Meissel’s expansion, Applied Mathematics Letters, Volume 23 (2010) no. 11, p. 1331 | DOI:10.1016/j.aml.2010.06.026
  • Vepštas, Linas An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions, Numerical Algorithms, Volume 47 (2008) no. 3, p. 211 | DOI:10.1007/s11075-007-9153-8
  • Sondow, Jonathan; Hadjicostas, Petros The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant, Journal of Mathematical Analysis and Applications, Volume 332 (2007) no. 1, p. 292 | DOI:10.1016/j.jmaa.2006.09.081
  • Apostol, Tom M Dirichlet L-functions and character power sums, Journal of Number Theory, Volume 2 (1970) no. 2, p. 223 | DOI:10.1016/0022-314x(70)90022-3
  • Dingle, R. B. The Fermi-Dirac integrals Fp(η)=(p!)10εp(eεη+1)1dε, Applied Scientific Research, Section B, Volume 6 (1957) no. 1, p. 225 | DOI:10.1007/bf02920379
  • Dingle, R. B. The Bose-Einstein integrals Bp(η)=(p!)10εp(eεη1)1dε, Applied Scientific Research, Section B, Volume 6 (1957) no. 1, p. 240 | DOI:10.1007/bf02920380

Cité par 33 documents. Sources : Crossref