Étude semi-classique d'observables quantiques
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 7 (1985) no. 2, p. 101-135
@article{AFST_1985_5_7_2_101_0,
     author = {Wang, Xue Ping},
     title = {\'Etude semi-classique d'observables quantiques},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {5e s{\'e}rie, 7},
     number = {2},
     year = {1985},
     pages = {101-135},
     zbl = {0597.35028},
     mrnumber = {842765},
     language = {fr},
     url = {http://www.numdam.org/item/AFST_1985_5_7_2_101_0}
}
Wang, Xue Ping. Étude semi-classique d'observables quantiques. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 5, Volume 7 (1985) no. 2, pp. 101-135. http://www.numdam.org/item/AFST_1985_5_7_2_101_0/

[1 ] R. Beals. «A general calculus of pseudo-differential operators». Duke Math. J., 42 (1975), 1-42. | MR 367730 | Zbl 0343.35078

[2] A.P. Calderon et R. Vaillancourt. «A class of bounded pseudo-differential operators». Proc. Nat. Acad. Sci. USA, 69 (1972), 1185-1187. | MR 298480 | Zbl 0244.35074

[3] J. Chazarain. «Spectre d'un Hamiltonien quantique et mécanique classique». Comm. P.D.E., 5 (6) (1980) 595-644. | MR 578047 | Zbl 0437.70014

[4] Yu.V. Egorov . «On canonical transformation of pseudo-differential operators». Uspehi Mat. Nauk., 25 (1969) 235-236. | MR 265748 | Zbl 0191.43802

[5] D. Fujiwara. «A construction of the fundamental solution for the Schrödinger equations». J. Anal. Math., 35 (1979) 41-96. | MR 555300 | Zbl 0418.35032

[6] G.A. Hagedorn. «Semi-classical quantum mechnics, I the h → 0 limit for coherent states». Comm. Math. Phys., 71 (1980) 77-93.

[7] B. Helffer et D. Robert. «Calcul fonctionnel par la transformation de Melin et opérateurs admissibles». J. Funct. Anal., 53 (3) (1983) 246-268. | MR 724029 | Zbl 0524.35103

[8] K. Hepp. «The classical limit for quantum mechanical correlation functions». Comm. Math. Phys., 35 (1974) 265-277. | MR 332046

[9] H. Hogreve, J. Potthoff et R. Schrader. «Classical limits for quantum particles in Yang-Mills potentials». Comm. Math. Phys., 91 (4) (1983) 573-598. | MR 727204 | Zbl 0547.58044

[10] L. Hormander. «The Weyl calculus of pseudo-differential operators». Comm. Pure. Appl. Math., 32 (1979) 359-443. | MR 517939 | Zbl 0388.47032

[11] H. Kitada. «A calculus of Fourier integral operators and the global fundamental solution for a Schrödinger equation». Osaka J. Math., 19 (1982) 863-900. | MR 687775 | Zbl 0508.35079

[12] H. Kitada et H. Kumano-Go. «A family of Fourier integral operators and the fundamental solution for a Schrödinger equation». Osaka J. Math., 18 (1981) 291-360. | MR 628838 | Zbl 0472.35034

[13] V.P. Maslov et M.V. Fedoriuk. «Semi-classical approximation in quantum mechanics». D. Reidel, Dordrecht, (1981). | Zbl 0458.58001

[14] D. Robert. «Calcul fonctionnel sur les opérateurs admissibles et applications». J. Funct. Anal., 45 (1) (1983) 74-94. | MR 645646 | Zbl 0482.35069

[15] D. Robert. «Approximation semi-classique». Cours de 3ème cycle, Nantes 1982-1983, à paraitre.

[16] D. Robert et H. Tamura. «Semi-classical bounds for resolvents of Schrödinger operators ans asymptotics for scattering phase». Comm. in P.D.E., 9(10) (1984), 1017-1058. | MR 755930 | Zbl 0561.35021

[17] R. Schrader et M. Taylor. «Small asymptotics for quantum partition functions associated to particles in external Yang-Mills potentials». Comm. Math. Phys., 92, (1984), 555-594. | MR 736411 | Zbl 0534.58028

[18] B. Simon. «The classical limit of quantum partition functions». Comm. Math. Phys., 71, (1980), 247-276. | MR 565281 | Zbl 0436.22012

[19] W. Thirring. «A course in mathematical physics». Vol. 3, Berlin, Springer, (1979). | MR 553112

[20] A. Voros. «Developpement semi-classique». Thèse, Orsay, (1977).

[21] X.P. Wang. «Etude semi-classique d'observables quantiques». Journée «Equations aux Dérivées Partielles» de Nantes-Rennes, Avril 1984.