Sur l'extension des fonctions C R
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 7 (1985) no. 3-4, pp. 251-289.
@article{AFST_1985_5_7_3-4_251_0,
     author = {Maingot, St\'ephane},
     title = {Sur l'extension des fonctions {C} {R}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {251--289},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {5e s{\'e}rie, 7},
     number = {3-4},
     year = {1985},
     mrnumber = {877169},
     zbl = {0605.32008},
     language = {fr},
     url = {http://archive.numdam.org/item/AFST_1985_5_7_3-4_251_0/}
}
TY  - JOUR
AU  - Maingot, Stéphane
TI  - Sur l'extension des fonctions C R
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1985
SP  - 251
EP  - 289
VL  - 7
IS  - 3-4
PB  - Université Paul Sabatier
PP  - Toulouse
UR  - http://archive.numdam.org/item/AFST_1985_5_7_3-4_251_0/
LA  - fr
ID  - AFST_1985_5_7_3-4_251_0
ER  - 
%0 Journal Article
%A Maingot, Stéphane
%T Sur l'extension des fonctions C R
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1985
%P 251-289
%V 7
%N 3-4
%I Université Paul Sabatier
%C Toulouse
%U http://archive.numdam.org/item/AFST_1985_5_7_3-4_251_0/
%G fr
%F AFST_1985_5_7_3-4_251_0
Maingot, Stéphane. Sur l'extension des fonctions C R. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 7 (1985) no. 3-4, pp. 251-289. http://archive.numdam.org/item/AFST_1985_5_7_3-4_251_0/

[1] M.S. Baouendi et F. Treves. «A property of the functions and distributions annihilated by a locally integrable system of complex vector fields». Ann. of Marh. 113 (1981), 387-421. | MR | Zbl

[2] M.S. Baouendi et F. Treves. «About the holomorphic extension of CR functions on real hypersurfaces in complex space». Duke Math. J. 51, (1984), 77-107. | MR | Zbl

[3] E. Bishop. «Differentiable manifolds in complex Euclidean space». Duke Math. J., 32 (1965), 1-22. | MR | Zbl

[4] Al Boggess. «CR extendability near a point where the first Leviform vanishes». Duke Math. J. 48 (1981), 665-684. | MR | Zbl

[5] Al Boggess et J.C. Polking. «Holomorphic extension of CR functions» Duke Math. J. 49 (1982), 757-784. | MR | Zbl

[6] C.D. Hill et G. Taiaini. «Families of analytic disc in n with Boundaries on a prescribed CR-submanifold». Ann. Scoula Norm. Sup. Pisa 4-5 (1978), 327-380. | Numdam | MR | Zbl

[7] L. Hormander. «An introduction to complex analysis in several variables». Van Nostrand N.J. 1966. | MR | Zbl

[8] H. Lewy. «On the local character of the solutions of an a typical linear differential equation in three variables and a related theorem for regular functions of two complex variables». Ann. of Math. (2) 64 (1956), 514-522. | MR | Zbl

[9] W. Rudin. «Principles of Mathematical analysis 3 rd edition». Mc Graw Hill, (1964). | MR | Zbl

[10] R.O. Wells, Jr. «On the local holomorphic hull of a real submanifold in several complex variables». Comm. Pure Appl. Math. 19 (1966), 145-165. | MR | Zbl

[11] R.O. Wells, Jr. «Holomorphic hulls and holomorphic convexity of differentiable submanifolds». Trans. Amer. Math. Soc. 132 (1968), 245-262. | MR | Zbl