The density of rational points on a pfaff curve
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 16 (2007) no. 3, pp. 635-645.

This paper is concerned with the density of rational points on the graph of a non-algebraic pfaffian function.

Cet article est concerné par la densité de points rationnels sur le graphe d’une fonction pfaffienne non-algébrique.

DOI: 10.5802/afst.1162
Pila, Jonathan 1

1 School of Mathematics, University of Bristol, Bristol, BS8 1TW (UK)
@article{AFST_2007_6_16_3_635_0,
     author = {Pila, Jonathan},
     title = {The density of rational points on a pfaff curve},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {635--645},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 16},
     number = {3},
     year = {2007},
     doi = {10.5802/afst.1162},
     mrnumber = {2379055},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1162/}
}
TY  - JOUR
AU  - Pila, Jonathan
TI  - The density of rational points on a pfaff curve
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2007
DA  - 2007///
SP  - 635
EP  - 645
VL  - Ser. 6, 16
IS  - 3
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1162/
UR  - https://www.ams.org/mathscinet-getitem?mr=2379055
UR  - https://doi.org/10.5802/afst.1162
DO  - 10.5802/afst.1162
LA  - en
ID  - AFST_2007_6_16_3_635_0
ER  - 
%0 Journal Article
%A Pila, Jonathan
%T The density of rational points on a pfaff curve
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2007
%P 635-645
%V Ser. 6, 16
%N 3
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U https://doi.org/10.5802/afst.1162
%R 10.5802/afst.1162
%G en
%F AFST_2007_6_16_3_635_0
Pila, Jonathan. The density of rational points on a pfaff curve. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 16 (2007) no. 3, pp. 635-645. doi : 10.5802/afst.1162. http://archive.numdam.org/articles/10.5802/afst.1162/

[1] Bombieri (E) and Pila (J.).— The number of integral points on arcs and ovals, Duke Math. J. 59, p. 337-357 (1989). | MR | Zbl

[2] van den Dries (L.).— Tame topology and o-minimal structures, LMS Lecture Note Series 248, CUP, Cambridge, (1998). | Zbl

[3] Gabrielov (A.) and Vorobjov (N.).— Complexity of computations with pfaffian and noetherian functions, in Normal Forms, Bifurcations and Finiteness problems in Differential Equations, Kluwer, (2004). | MR

[4] Gwozdziewicz (J.), Kurdyka (K.), Parusinski (A.).— On the number of solutions of an algebraic equation on the curve y=e x +sinx,x>0, and a consequence for o-minimal structures, Proc. Amer. Math. Soc. 127, p. 1057-1064 (1999). | MR | Zbl

[5] Khovanskii (A. G.).— Fewnomials, Translations of Mathematical Monographs 88, AMS, Providence, (1991). | MR | Zbl

[6] Pila (J.).— Integer points on the dilation of a subanalytic surface, Quart. J. Math. 55, p. 207-223 (2004). | MR | Zbl

[7] Pila (J.).— Rational points on a subanalytic surface, Ann. Inst. Fourier 55, p. 1501-1516 (2005). | Numdam | MR | Zbl

[8] Pila (J.).— Note on the rational points of a pfaff curve, Proc. Edin. Math. Soc., 49 (2006), 391-397. | MR | Zbl

[9] Pila (J.).— Mild parameterization and the rational points of a pfaff curve, Commentari Mathematici Universitatis Sancti Pauli, 55 (2006), 1-8. | MR | Zbl

[10] Pila (J.) and Wilkie (A. J.).— The rational points of a definable set, Duke Math. J., 133 (2006), 591-616. | MR | Zbl

[11] Pólya (G.).— On the zeros of the derivative of a function and its analytic character, Bull. Amer. Math. Soc. 49, 178-191 (1943). Also Collected Papers: Volume II, MIT Press, Cambridge Mass., p. 394-407 (1974). | MR | Zbl

[12] Waldschmidt (M.).— Diophantine approximation on linear algebraic groups, Grund. Math. Wissen. 326, Springer, Berlin, (2000). | MR | Zbl

[13] Wilkie (A. J.).— A theorem of the complement and some new o-minimal structures, Selecta Math. (N. S.) 5, p. 397-421 (1999). | MR | Zbl

Cited by Sources: