Freeness of hyperplane arrangements and related topics
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 2, p. 483-512

These are the expanded notes of the lecture by the author in “Arrangements in Pyrénées”, June 2012. We are discussing relations of freeness and splitting problems of vector bundles, several techniques proving freeness of hyperplane arrangements, K. Saito’s theory of primitive derivations for Coxeter arrangements, their application to combinatorial problems and related conjectures.

Cet article est un développement des notes de l’exposé donnée par l’auteur à la conférence « Arrangements en Pyrénées », en juin 2012. Nous discutons les relations entre les problèmes de liberté et ceux de décomposabilité pour les fibrés vectoriels, plusieurs techniques qui prouvent la liberté pour des arrangements d’hyperplans, la théorie de K. Saito des dérivations primitives pour les arrangements de Coxeter, leur application à des problèmes combinatoires et quelques conjectures liées.

@article{AFST_2014_6_23_2_483_0,
     author = {Yoshinaga, Masahiko},
     title = {Freeness of hyperplane arrangements and related topics},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 23},
     number = {2},
     year = {2014},
     pages = {483-512},
     doi = {10.5802/afst.1413},
     mrnumber = {3205600},
     zbl = {1295.14049},
     language = {en},
     url = {http://www.numdam.org/item/AFST_2014_6_23_2_483_0}
}
Yoshinaga, Masahiko. Freeness of hyperplane arrangements and related topics. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 23 (2014) no. 2, pp. 483-512. doi : 10.5802/afst.1413. http://www.numdam.org/item/AFST_2014_6_23_2_483_0/

[1] Abe (T.).— Exponents of 2-multiarrangements and freeness of 3-arrangements. to appear in J. Alg. Combin.

[2] Abe (T.), Numata (Y.).— Exponents of 2-multiarrangements and multiplicity lattices. J. of Alg. Comb. 35, no. 1, p. 1-17 (2012). | MR 2873095 | Zbl 1235.52034

[3] Abe (T.), Terao (H.), Wakefield (M.).— The characteristic polynomial of a multiarrangement, Adv. in Math. 215, p. 825-838 (2007). | MR 2355609 | Zbl 1123.52012

[4] Abe (T.), Yoshinaga (M.).— Splitting criterion for reflexive sheaves. Proc. Amer. Math. Soc. 136, no. 6, p. 1887-1891 (2008). | MR 2383493 | Zbl 1139.14034

[5] Abe (T.), Yoshinaga (M.).— Coxeter multiarrangements with quasi-constant multiplicities. J. Algebra 322, no. 8, p. 2839-2847 (2009). | MR 2560905 | Zbl 1185.52021

[6] Abe (T.), Yoshinaga (M.).— Free arrangements and coefficients of characteristic polynomials. arXiv:1109.0668, Preprint | MR 3127042

[7] Athanasiadis (C.A.).— Deformations of Coxeter hyperplane arrangements and their characteristic polynomials. Arrangements–Tokyo (1998), p. 1-26, Adv. Stud. Pure Math., 27, Kinokuniya, Tokyo (2000). | MR 1796891 | Zbl 0976.32016

[8] Athanasiadis (C.A.).— Extended Linial hyperplane arrangements for root systems and a conjecture of Postnikov and Stanley. J. Algebraic Combin. 10, no. 3, p. 207-225 (1999). | MR 1723184 | Zbl 0948.52012

[9] Athanasiadis (C.A.).— Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes. Bull. London Math. Soc. 36, no. 3, p. 294-302 (2004). | MR 2038717 | Zbl 1068.20038

[10] Bertone (C.), M. Roggero (M.).— Splitting type, global sections and Chern classes for torsion free sheaves on P n . J. Korean Math. Soc. 47, no. 6, p. 1147-1165 (2010). | MR 2744204 | Zbl 1213.14032

[11] Chevalley (C.).— Invariants of finite groups generated by reflections. Amer. J. Math. 77, p. 778-782 (1955). | MR 72877 | Zbl 0065.26103

[12] Edelman (P. H.), Reiner (V.).— Free arrangements and rhombic tilings. Discrete Comput. Geom. 15, no. 3, p. 307-340 (1996). | MR 1380397 | Zbl 0853.52013

[13] Edelman (P. H.), Reiner (V.).— Not all free arrangements are K(π,1). Bull. Amer. Math. Soc. (N.S.) 32 p. 61-65 (1995). | MR 1273396 | Zbl 0815.52012

[14] Elencwajg (G.), Forster (O.).— Bounding cohomology groups of vector bundles on Pn. Math. Ann. 246, no. 3, p. 251-270 (1979/80). | MR 563404 | Zbl 0432.14011

[15] Gao (R.), Pei (D.), Terao (H.).— The Shi arrangement of the type D . Proc. Japan Acad. Ser. A Math. Sci., 88, p. 41-45 (2012). | MR 2908622 | Zbl 1242.32015

[16] Hartshorne (R.).— Stable reflexive sheaves. Math. Ann. 254, p. 121-176 (1980). | MR 597077 | Zbl 0431.14004

[17] Hartshorne (R.).— Algebraic Geometry. Springer GTM 52. | MR 463157 | Zbl 0367.14001

[18] Headley (P.).— On a family of hyperplane arrangements related to the affine Weyl groups. J. Alg. Comb. 6 p. 331-338 (1997). | MR 1471893 | Zbl 0911.52009

[19] Mustaţǎ (M.), Schenck (H.).— The module of logarithmic p-forms of a locally free arrangement, J. Algebra 241, p. 699-719 (2001). | MR 1843320 | Zbl 1047.14007

[20] Okonek (C.), Schneider (M.), Spindler (H.).— Vector bundles on complex projective spaces. Progress in Mathematics, 3. Birkhäuser, Boston, Mass. (1980). (Revised version). | MR 561910 | Zbl 0438.32016

[21] Orlik (P.), Solomon (L.).— Combinatorics and topology of complements of hyperplanes. Invent. Math. 56, no. 2, p. 167-189 (1980). | MR 558866 | Zbl 0432.14016

[22] Orlik (P.) and Terao (H.).— Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer-Verlag, Berlin, 1992. xviii+325 pp. | MR 1217488 | Zbl 0757.55001

[23] Postnikov (A.), Stanley (R.).— Deformations of Coxeter hyperplane arrangements. J. Combin. Theory Ser. A 91, no. 1-2, p. 544-597 (2000). | MR 1780038 | Zbl 0962.05004

[24] Saito (K.).— Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, no. 2, p. 265-291 (1980). | MR 586450 | Zbl 0496.32007

[25] Saito (K.).— Period mapping associated to a primitive form. Publ. Res. Inst. Math. Sci. 19, no. 3, p. 1231-1264 (1983). | MR 723468 | Zbl 0539.58003

[26] Saito (K.).— On a linear structure of the quotient variety by a finite reflexion group. Publ. Res. Inst. Math. Sci. 29, no. 4, p. 535-579 (1993). | MR 1245441 | Zbl 0828.15002

[27] Saito (K.).— Uniformization of the orbifold of a finite reflection group. Frobenius manifolds, p. 265-320, Aspects Math., E36, Vieweg, Wiesbaden (2004). | MR 2115774 | Zbl 1102.32016

[28] Schenck (H.).— A rank two vector bundle associated to a three arrangement, and its Chern polynomial. Adv. Math. 149, no. 2, p. 214-229 (2000). | MR 1742707 | Zbl 0977.52029

[29] Schenck (H.).— Elementary modifications and line configurations in 2 . Comment. Math. Helv. 78, no. 3, p. 447-462 (2003). | MR 1998388 | Zbl 1033.52018

[30] Schenck (H.).— S. Tohǎneanu, Freeness of conic-line arrangements in 2 . Comment. Math. Helv. 84, no. 2, p. 235-258 (2009). | MR 2495794 | Zbl 1183.52014

[31] Schulze (M.).— Freeness and multirestriction of hyperplane arrangements. Compositio Math. 148, p. 799-806 (2012). | MR 2925399 | Zbl 1261.14028

[32] Silvotti (R.).— On the Poincaré polynomial of a complement of hyperplanes. Math. Res. Lett. 4, no. 5, p. 645-661 (1997). | MR 1484696 | Zbl 0910.32009

[33] Solomon (L.).— Invariants of finite reflection groups. Nagoya Math. J. 22 p. 57-64 (1963). | MR 154929 | Zbl 0117.27104

[34] Solomon (L.), Terao (H.).— A formula for the characteristic polynomial of an arrangement. Adv. in Math. 64, no. 3, p. 305-325 (1987). | MR 888631 | Zbl 0625.05001

[35] Solomon (L.), Terao (H.).— The double Coxeter arrangement. Comm. Math. Helv. 73, p. 237-258 (1998). | MR 1611699 | Zbl 0949.52009

[36] Suyama (D.).— A basis construction for the Shi arrangement of the type B or C . arXiv:1205.6294

[37] Suyama (D.), Terao (H.).— The Shi arrangements and the Bernoulli polynomials. To appear in Bull. London Math. Soc. | MR 2967001 | Zbl 1251.32022

[38] Terao (H.).— Arrangements of hyperplanes and their freeness. I, II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, no. 2, p. 293-320 (1980). | MR 586451 | Zbl 0509.14006

[39] Terao (H.).— Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula. Invent. Math. 63, no. 1, p. 159-179 (1981). | MR 608532 | Zbl 0437.51002

[40] Terao (H.).— The exponents of a free hypersurface. Singularities, Part 2 (Arcata, Calif., 561-566 1981), Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI (1983). | MR 713280 | Zbl 0518.32005

[41] Terao (H.).— Multiderivations of Coxeter arrangements. Invent. Math. 148, no. 3, p. 659-674 (2002). | MR 1908063 | Zbl 1032.52013

[42] Terao (H.).— The Hodge filtration and the contact-order filtration of derivations of Coxeter arrangements. Manuscripta Math. 118, no. 1, p. 1-9 (2005). | MR 2171289 | Zbl 1082.32020

[43] Wakamiko (A.).— On the Exponents of 2-Multiarrangements. Tokyo J. Math. 30, p. 99-116 (2007). | MR 2328057 | Zbl 1130.52010

[44] Wakefield (M.), Yuzvinsky (S.).— Derivations of an effective divisor on the complex projective line. Trans. A. M. S. 359, p. 4389-4403 (2007). | MR 2309190 | Zbl 1121.52036

[45] Yamada (H.).— Lie group theoretical construction of period mapping. Math. Z. 220, no. 2, p. 231-255 (1995). | MR 1355028 | Zbl 0843.58052

[46] Yoshinaga (M.).— The primitive derivation and freeness of multi-Coxeter arrangements. Proc. Japan Acad., 78, Ser. A, p. 116-119 (2002). | MR 1930214 | Zbl 1034.32020

[47] Yoshinaga (M.).— Characterization of a free arrangement and conjecture of Edelman and Reiner. Invent. Math. 157, no. 2, p. 449-454 (2004). | MR 2077250 | Zbl 1113.52039

[48] Yoshinaga (M.).— On the freeness of 3-arrangements. Bull. London Math. Soc. 37, no. 1, p. 126-134 (2005). | MR 2105827 | Zbl 1071.52019

[49] Yoshinaga (M.).— On the extendability of free multiarrangements. Arrangements, Local Systems and Singularities: CIMPA Summer School, Galatasaray University, Istanbul (2007), p. 273-281, Progress in Mathematics, 283, Birkhäuser, Basel (2009). | MR 3025868

[50] Yoshinaga (M.).— Arrangements, multiderivations, and adjoint quotient map of type ADE. Arrangements of Hyperplanes–Sapporo 2009, Advanced Studies in Pure Math., vol. 62. | Zbl 1266.32037

[51] Yuzvinsky (S.).— Cohomology of local sheaves on arrangement lattices. Proc. Amer. Math. Soc. 112, no. 4, p. 1207-1217 (1991). | MR 1062840 | Zbl 0758.32014

[52] Yuzvinsky (S.).— The first two obstructions to the freeness of arrangements. Trans. Amer. Math. Soc. 335, no. 1, p. 231-244 (1993). | MR 1089421 | Zbl 0768.05019

[53] Yuzvinsky (S.).— Free and locally free arrangements with a given intersection lattice. Proc. Amer. Math. Soc. 118, no. 3, p. 745-752 (1993). | MR 1160307 | Zbl 0797.52009

[54] Ziegler (G.).— Multiarrangements of hyperplanes and their freeness. Singularities (Iowa City, IA, 1986), p. 345-359, Contemp. Math., 90, Amer. Math. Soc., Providence, RI (1989). | MR 1000610 | Zbl 0678.51010

[55] Ziegler (G.).— Matroid representations and free arrangements. Trans. Amer. Math. Soc. 320, no. 2, p. 525-541 (1990). | MR 986703 | Zbl 0727.05019