On montre, grâce à différents exemples, comment on peut utiliser des mesures de Gibbs pour construire des solutions globales, à basse régularité, pour des équations dispersives. La construction repose sur le théorème de compacité de Prokhorov, combiné avec le théorème de convergence de Skorokhod. D’abord, on considère l’équation de Schrödinger non-linéaire (NLS) sur la sphère de dimension 3. Ensuite, on étudie l’équation de Benjamin–Ono et l’équation de Schrödinger avec dérivée sur le cercle. Puis, on construit une mesure de Gibbs et une solution globales aux équations des demi-ondes et de Szegő avec conditions périodiques. Enfin, on considère NLS cubique défocalisante, en dimension deux, sur un domaine quelconque et on construit des solutions globales sur le support de la mesure de Gibbs correspondante.
We show, by the means of several examples, how we can use Gibbs measures to construct global solutions to dispersive equations at low regularity. The construction relies on the Prokhorov compactness theorem combined with the Skorokhod convergence theorem. To begin with, we consider the nonlinear Schrödinger equation (NLS) on the tri-dimensional sphere. Then we focus on the Benjamin–Ono equation and on the derivative nonlinear Schrödinger equation on the circle. Next, we construct a Gibbs measure and global solutions to the so-called periodic half-wave equation and of the Szegő equation. Finally, we consider the cubic defocusing NLS on an arbitrary spatial domain and we construct global solutions on the support of the associated Gibbs measure.
Accepté le :
Publié le :
DOI : 10.5802/afst.1578
Mots-clés : nonlinear Schrödinger equation, Benjamin–Ono equation, derivative nonlinear Schrödinger equation, half-wave equation, Szegő equation, random data, Gibbs measure, weak solutions, global solutions
@article{AFST_2018_6_27_3_527_0, author = {Burq, Nicolas and Thomann, Laurent and Tzvetkov, Nikolay}, title = {Remarks on the {Gibbs} measures for nonlinear dispersive equations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {527--597}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 27}, number = {3}, year = {2018}, doi = {10.5802/afst.1578}, zbl = {1405.35193}, mrnumber = {3869074}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1578/} }
TY - JOUR AU - Burq, Nicolas AU - Thomann, Laurent AU - Tzvetkov, Nikolay TI - Remarks on the Gibbs measures for nonlinear dispersive equations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2018 SP - 527 EP - 597 VL - 27 IS - 3 PB - Université Paul Sabatier, Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1578/ DO - 10.5802/afst.1578 LA - en ID - AFST_2018_6_27_3_527_0 ER -
%0 Journal Article %A Burq, Nicolas %A Thomann, Laurent %A Tzvetkov, Nikolay %T Remarks on the Gibbs measures for nonlinear dispersive equations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2018 %P 527-597 %V 27 %N 3 %I Université Paul Sabatier, Toulouse %U http://archive.numdam.org/articles/10.5802/afst.1578/ %R 10.5802/afst.1578 %G en %F AFST_2018_6_27_3_527_0
Burq, Nicolas; Thomann, Laurent; Tzvetkov, Nikolay. Remarks on the Gibbs measures for nonlinear dispersive equations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 3, pp. 527-597. doi : 10.5802/afst.1578. http://archive.numdam.org/articles/10.5802/afst.1578/
[1] Global flows with invariant (Gibbs) measures for Euler and Navier–Stokes two dimensional fluids, Commun. Math. Phys., Volume 129 (1990) no. 3, pp. 431-444 | DOI | MR | Zbl
[2] properties for Gaussian random series, Trans. Am. Math. Soc., Volume 360 (2008) no. 8, pp. 4425-4439 | DOI | MR | Zbl
[3] On multilinear spectral cluster estimates for manifolds with boundary, Math. Res. Lett., Volume 15 (2008) no. 2-3, pp. 419-426 | DOI | MR | Zbl
[4] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 107-156 | DOI | Zbl
[5] Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., Volume 166 (1994) no. 1, pp. 1-26 | DOI | Zbl
[6] Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | Zbl
[7] Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3d case, J. Eur. Math. Soc., Volume 16 (2014) no. 6, pp. 1289-1325 | DOI | Zbl
[8] Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 182 (1996) no. 2, pp. 485-504 | DOI | Zbl
[9] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Am. J. Math., Volume 126 (2004) no. 3, pp. 569-605 | DOI | Zbl
[10] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math., Volume 159 (2005) no. 1, pp. 187-223 | DOI | Zbl
[11] Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005) no. 2, pp. 255-301 | DOI | Numdam | Zbl
[12] Injections de Sobolev probabilistes et applications, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013) no. 6, pp. 917-962 | DOI | Numdam | MR | Zbl
[13] Long time dynamics for the one dimensional nonlinear Schrödinger equation, Ann. Inst. Fourier, Volume 63 (2013) no. 6, pp. 2137-2198 | DOI | Zbl
[14] Global infinite energy solutions for the cubic wave equation, Bull. Soc. Math. Fr., Volume 143 (2015) no. 2, pp. 301-313 | DOI | MR | Zbl
[15] Random data Cauchy theory for supercritical wave equations I: Local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | MR | Zbl
[16] Random data Cauchy theory for supercritical wave equations. II. A global existence result, Invent. Math., Volume 173 (2008) no. 3, pp. 477-496 | DOI | MR | Zbl
[18] Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations (Annals of Mathematics Studies), Volume 163, Princeton University Press, 2007, pp. 131-155 | Zbl
[19] Almost sure well-posedness of the cubic nonlinear Schrödinger equation below , Duke Math. J., Volume 161 (2012) no. 3, pp. 367-414 | DOI | Zbl
[20] Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., Volume 196 (2002) no. 1, pp. 180-210 | DOI | MR | Zbl
[21] Invariance of the Gibbs measure for the Benjamin-Ono equation, J. Eur. Math. Soc., Volume 17 (2015) no. 5, pp. 1107-1198 | DOI | MR | Zbl
[22] Invariant measures and long time behaviour for the Benjamin-Ono equation III, Commun. Math. Phys., Volume 339 (2015) no. 3, pp. 815-857 | DOI | MR | Zbl
[23] The cubic Szegő equation, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010) no. 5, pp. 761-810 | DOI | Numdam | Zbl
[24] The cubic Szegő equation, Sémin. Équ. Dériv. Partielles, Volume 2008-2009 (2010), 2, 19 pages (Exp. No. 2, 19 p.) | Numdam | Zbl
[25] Effective integrable dynamics for a certain nonlinear wave equation, Anal. PDE, Volume 5 (2012) no. 5, pp. 1139-1155 | DOI | MR | Zbl
[26] Invariant tori for the cubic Szegö equation, Invent. Math., Volume 187 (2012) no. 3, pp. 707-754 | DOI | Zbl
[27] Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., Volume 39 (2008) no. 6, pp. 1890-1920 | DOI | Zbl
[28] Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Commun. Math. Phys., Volume 322 (2013) no. 1, pp. 19-48 | Zbl
[29] The analysis of linear partial differential operators. III. Pseudo-differential operators, Classics in Mathematics, Springer, 2007, xii+525 pages (reprint of the 1994 ed.) | Zbl
[30] Foundations of modern probability, Probability and Its Applications, Springer, 2002, xvii+638 pages | DOI | Zbl
[31] Theory of probability and random processes, Universitext, Springer, 2007, xi+353 pages | Zbl
[32] Nondispersive solutions to the -critical half-wave equation, Arch. Ration. Mech. Anal., Volume 209 (2013) no. 1, pp. 61-129 | DOI | MR | Zbl
[33] Global well-posedness in for the periodic Benjamin-Ono equation, Am. J. Math., Volume 130 (2008) no. 3, pp. 635-683 | DOI | MR | Zbl
[34] Sharp ill-posedness result for the periodic Benjamin-Ono equation, J. Funct. Anal., Volume 257 (2009) no. 11, pp. 3488-3516 | DOI | MR | Zbl
[35] Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., Volume 14 (2012) no. 4, pp. 1275-1330 | DOI | MR | Zbl
[36] Absolute continuity of Brownian bridges under certain gauge transformations, Math. Res. Lett., Volume 18 (2011) no. 5, pp. 875-887 | DOI | MR | Zbl
[37] Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono system, SIAM J. Math. Anal., Volume 41 (2009) no. 6, pp. 2207-2225 | Zbl
[38] Invariant Gibbs measures and a.s. global well-posedness for coupled KdV systems, Differ. Integral Equ., Volume 22 (2009) no. 7-8, pp. 637-668 | MR | Zbl
[39] Remarks on nonlinear smoothing under randomization for the periodic KdV and the cubic Szegő equation, Funkc. Ekvacioj, Volume 54 (2011) no. 3, pp. 335-365 | MR | Zbl
[40] On the one-dimensional cubic nonlinear Schrödinger equation below , Kyoto J. Math., Volume 52 (2012) no. 1, pp. 99-115 | Zbl
[41] First and second order approximations for a nonlinear wave equation, J. Dyn. Differ. Equations, Volume 25 (2013) no. 2, pp. 305-333 | DOI | MR | Zbl
[42] An estimate near the boundary for the spectral function of the Laplace operator, Am. J. Math., Volume 102 (1980), pp. 869-902 | DOI | MR | Zbl
[43] The Euclidean (Quantum) Field Theory, Princeton Series in Physics, Princeton University Press, 1974, xx+392 pages | Zbl
[44] On the norm of spectral clusters for compact manifolds with boundary, Acta Math., Volume 198 (2007) no. 1, pp. 107-153 | DOI | MR | Zbl
[45] Eigenfunction and Bochner Riesz estimates on manifolds with boundary, Math. Res. Lett., Volume 9 (2002) no. 2-3, pp. 205-216 | DOI | MR | Zbl
[46] Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity, Volume 23 (2010) no. 11, pp. 2771-2791 | DOI | Zbl
[47] Invariant measures for the nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ., Volume 3 (2006) no. 2, pp. 111-160 | DOI | MR | Zbl
[48] Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier, Volume 58 (2008) no. 7, pp. 2543-2604 | DOI | Numdam | Zbl
[49] Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Relat. Fields, Volume 146 (2010) no. 3-4, pp. 481-514 | DOI | MR | Zbl
[50] Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013) no. 2, pp. 249-299 | DOI | Numdam | MR | Zbl
[51] Invariant measures and long time behaviour for the Benjamin-Ono equation. I, Int. Math. Res. Not., Volume 2014 (2014) no. 17, pp. 4679-4714 | DOI | Zbl
[52] Invariant measures and long time behaviour for the Benjamin-Ono equation. II, J. Math. Pures Appl., Volume 103 (2015) no. 1, pp. 102-141 | DOI | MR | Zbl
[53] Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Math., 1756, Springer, 2001, 147 pages | MR | Zbl
[54] Global existence of solutions to Schrödinger equations on compact Riemannian manifolds below , Bull. Soc. Math. Fr., Volume 138 (2010) no. 4, pp. 583-613 | DOI | Numdam | MR | Zbl
Cité par Sources :