L’espace des fonctions analytiques bornées sur une région peut être muni de plusieurs topologies différentes. Deux topologies faibles sont étudiées ici. L’une est celle appelée topologie stricte et l’autre la topologie faible étoilée. Le principal outil nouveau est une espèce de balayage ou ramonage.
@article{AIF_1966__16_1_235_0, author = {Rubel, Lee A. and Shields, A. L.}, title = {The space of bounded analytic functions on a region}, journal = {Annales de l'Institut Fourier}, pages = {235--277}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {16}, number = {1}, year = {1966}, doi = {10.5802/aif.231}, mrnumber = {33 #6440}, zbl = {0152.13202}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.231/} }
TY - JOUR AU - Rubel, Lee A. AU - Shields, A. L. TI - The space of bounded analytic functions on a region JO - Annales de l'Institut Fourier PY - 1966 SP - 235 EP - 277 VL - 16 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.231/ DO - 10.5802/aif.231 LA - en ID - AIF_1966__16_1_235_0 ER -
%0 Journal Article %A Rubel, Lee A. %A Shields, A. L. %T The space of bounded analytic functions on a region %J Annales de l'Institut Fourier %D 1966 %P 235-277 %V 16 %N 1 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.231/ %R 10.5802/aif.231 %G en %F AIF_1966__16_1_235_0
Rubel, Lee A.; Shields, A. L. The space of bounded analytic functions on a region. Annales de l'Institut Fourier, Tome 16 (1966) no. 1, pp. 235-277. doi : 10.5802/aif.231. http://archive.numdam.org/articles/10.5802/aif.231/
[1] Riemann Surfaces, Princeton (1960). | MR | Zbl
and ,[2] Théorie des Opérations Linéaires, Warszawa-Lwow (1932). | JFM | Zbl
,[3] On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239-255. | MR | Zbl
,[4] On absolutely convergent exponential sums, Trans. Amer. Math. Soc., 96 (1960), 162-183. | MR | Zbl
, and ,[5] Algebraic properties of classes of analytic functions, Seminars on Analytic Functions, vol. II, Princeton (1957), 175-188. | Zbl
,[6] Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. | MR | Zbl
,[7] On bounded analytic functions and closure problems, Ark. Mat. 2 (1952), 283-291. | MR | Zbl
,[8] Elementary Theory of Analytic Functions of One or Several Complex Variables, Paris (1963). | MR | Zbl
,[9] Linear Operators, Part I, New York (1958). | MR | Zbl
and ,[10] On the space of bounded regular functions, Sibirsk. Mat. Z., 2 (1961), 622-638 (See also the abstract, under the same title, Dokl. Adak. Nauk SSSR, 131 (1960), 40-43, translated in Soviet Math., 1 (1960), 202-204). | Zbl
,[11] Divisibility properties of integral functions, Duke Math. J., 6 (1940), 38-47. | JFM | Zbl
,[12] Lectures on Invariant Subspaces, New York (1964). | MR | Zbl
,[13] Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publications, 31 (1957). | MR | Zbl
and ,[14] Banach Spaces of Analytic Functions, Englewood Cliffs (1962). | MR | Zbl
,[15] General Topology, New York (1955). | MR | Zbl
,[16] Linear Topological Spaces, Princeton (1963). | MR | Zbl
, et al.,[17] Extreme points and extremum problems in H1, Pacific J. Math., 8 (1958), 467-485. | MR | Zbl
and ,[18] Locally Multiplicatively-convex Topological Algebras, Mem. Amer. Math. Soc., 11 (1952). | MR | Zbl
,[19] On certain extremum problems for analytic functions, Acta. Math., 90 (1953), 287-318. | MR | Zbl
and ,[20] Bounded approximation by polynomials, Acta Math., 112 (1964), 145-162. | MR | Zbl
and ,[21] Weak topologies on the bounded holomorphic functions, Bull. Amer. Math. Soc. (1965). | MR | Zbl
and ,[22] Essential boundary points, Bull. Amer. Math. Soc. 70 (1964), 321-324. | MR | Zbl
,[23] Banach spaces of functions analytic in the unit circle II, Studia Math., 12 (1951), 25-50. | MR | Zbl
,[24] Sur les séries Σ Ak/z — αk, C. R. Acad. Sci. Paris, 173 (1921), 1057-1058, 1327-1328. | JFM
,Cité par Sources :