De tels problèmes mixtes sont étudiés dans certains domaines non cylindriques, lorsque les conditions à l’instant initial sont celles de Cauchy, par l’intermédiaire de problèmes pseudo-différentiels sur le bord latéral du domaine. On donne des conditions qui permettent d’établir l’existence ou l’unicité de la solution.
Such mixed boundary-initial value problems are studied in some non cylindrical domains, by means of pseudo-differential problems on the lateral boundary of the domain. We give conditions which allow us to establish existence or uniqueness for the solution.
@article{AIF_1971__21_1_59_0, author = {Piriou, Alain}, title = {Probl\`emes aux limites g\'en\'eraux pour des op\'erateurs diff\'erentiels paraboliques dans un domaine born\'e}, journal = {Annales de l'Institut Fourier}, pages = {59--78}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, number = {1}, year = {1971}, doi = {10.5802/aif.362}, mrnumber = {44 #5604}, zbl = {0202.11103}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.362/} }
TY - JOUR AU - Piriou, Alain TI - Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné JO - Annales de l'Institut Fourier PY - 1971 SP - 59 EP - 78 VL - 21 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.362/ DO - 10.5802/aif.362 LA - fr ID - AIF_1971__21_1_59_0 ER -
%0 Journal Article %A Piriou, Alain %T Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné %J Annales de l'Institut Fourier %D 1971 %P 59-78 %V 21 %N 1 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.362/ %R 10.5802/aif.362 %G fr %F AIF_1971__21_1_59_0
Piriou, Alain. Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné. Annales de l'Institut Fourier, Tome 21 (1971) no. 1, pp. 59-78. doi : 10.5802/aif.362. https://www.numdam.org/articles/10.5802/aif.362/
[1] Uspechi Matem. Nauk, XIX, 3, 53-161. Russian Math. Surveys, 19, (1964), 53-157. | Zbl
et ,[2] Proceedings of Symposia in pure Math., 10, AMS (1967) 138-183. | Zbl
,[3] Ann. of Math., 83, (1966), 129-209. | Zbl
,[4] Cours à Stanford University (Juillet 1967).
,[5] Springer-Verlag (1964).
,[6] Fourier Integral Operators (à paraître).
,[7] Comptes Rendus, Série A, (1969), 214-217. | Zbl
et ,[8] Annali di Matematica, LXXXIII, (1969), 113-132.
,[9] Conf. del Sem. di Mat. dell'Univ. di Bari, 114-115 (1968). | Zbl
,[10] Comptes Rendus, Série A, (1969), 699-701. | Zbl
,[11] Journal of Math. Analysis and Application, 26, (1969) 479-511. | Zbl
,[12] Dunod (Paris), (1968), tome 2. | Zbl
et ,[13] Comptes Rendus, série A, (1969), 692-695. | Zbl
,[14] Annales de l'Institut Fourier, 20, 1, (1970). | Numdam | Zbl
,[15] Mat. Sbornik, 71 (113), (1966), 162-190. | Zbl
et ,- Fundamental Solution Operator for the Cauchy Problem on a Manifold, Functional Analytic Methods for Heat Green Operators, Volume 2354 (2024), p. 383 | DOI:10.1007/978-3-031-66612-4_15
- Volterra Operators with Asymptotics on Manifolds with Edge, Analysis of Pseudo-Differential Operators (2019), p. 121 | DOI:10.1007/978-3-030-05168-6_6
- Volterra operators in the edge-calculus, Analysis and Mathematical Physics, Volume 8 (2018) no. 4, p. 551 | DOI:10.1007/s13324-018-0238-4
- The Dirichlet Problem for the Heat Equation in Domains with Cuspidal Points on the Boundary, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics (2013), p. 1 | DOI:10.1007/978-3-0348-0537-7_1
- On the maximal L p -regularity of parabolic mixed-order systems, Journal of Evolution Equations, Volume 11 (2011) no. 2, p. 371 | DOI:10.1007/s00028-010-0095-6
- On the asymptotic completeness of the Volterra calculus, Journal d'Analyse Mathématique, Volume 94 (2004) no. 1, p. 249 | DOI:10.1007/bf02789049
- A spline collocation method for parabolic pseudodifferential equations, Journal of Computational and Applied Mathematics, Volume 140 (2002) no. 1-2, p. 41 | DOI:10.1016/s0377-0427(01)00401-0
- Volterra Families of Pseudodifferential Operators, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 1 | DOI:10.1007/978-3-0348-8191-3_1
- The Calculus of Volterra Mellin Pseudodifferential Operators with Operator-valued Symbols, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 47 | DOI:10.1007/978-3-0348-8191-3_2
- On the Inverse of Parabolic Systems of Partial Differential Equations of General Form in an Infinite Space-Time Cylinder, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 93 | DOI:10.1007/978-3-0348-8191-3_3
- Parabolic boundary integral operators symbolic representation and basic properties, Integral Equations and Operator Theory, Volume 40 (2001) no. 2, p. 185 | DOI:10.1007/bf01301465
- Anisotropic Edge Pseudo — Differential Operators with Discrete Asymptotics, Mathematische Nachrichten, Volume 184 (1997) no. 1, p. 73 | DOI:10.1002/mana.19971840104
- Parameter-elliptic and parabolic pseudodifferential boundary problems in globalL p sobolev spaces, Mathematische Zeitschrift, Volume 218 (1995) no. 1, p. 43 | DOI:10.1007/bf02571889
- Developments in Boundary Element Methods for Time-Dependent Problems, Problems and Methods in Mathematical Physics (1994), p. 17 | DOI:10.1007/978-3-322-85161-1_2
- Boundary integral solution of the two‐dimensional heat equation, Mathematical Methods in the Applied Sciences, Volume 16 (1993) no. 2, p. 87 | DOI:10.1002/mma.1670160203
- Boundary integral operators for the heat equation, Integral Equations and Operator Theory, Volume 13 (1990) no. 4, p. 498 | DOI:10.1007/bf01210400
- Pseudo-Differential Operators of Volterra Type on Spaces of Ultra Distributions and Parabolic Mixed Problems, Partial Differential Equations and the Calculus of Variations (1989), p. 851 | DOI:10.1007/978-1-4615-9831-2_15
- Pseudo-Differential Operators of Volterra Type on Spaces of Ultra Distributions and Parabolic Mixed Problems, Partial Differential Equations and the Calculus of Variations (1989), p. 851 | DOI:10.1007/978-1-4684-9196-8_36
- Degenerate Boundary Value Problems for Parabolic Pseudo‐Differential Operators, Mathematische Nachrichten, Volume 121 (1985) no. 1, p. 71 | DOI:10.1002/mana.19851210109
- Parabolic Evolution Operators. Hilbert Theory, Non-Homogeneous Boundary Value Problems and Applications (1972), p. 1 | DOI:10.1007/978-3-642-65217-2_1
Cité par 20 documents. Sources : Crossref