Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné
Annales de l'Institut Fourier, Tome 21 (1971) no. 1, pp. 59-78.

De tels problèmes mixtes sont étudiés dans certains domaines non cylindriques, lorsque les conditions à l’instant initial sont celles de Cauchy, par l’intermédiaire de problèmes pseudo-différentiels sur le bord latéral du domaine. On donne des conditions qui permettent d’établir l’existence ou l’unicité de la solution.

Such mixed boundary-initial value problems are studied in some non cylindrical domains, by means of pseudo-differential problems on the lateral boundary of the domain. We give conditions which allow us to establish existence or uniqueness for the solution.

@article{AIF_1971__21_1_59_0,
     author = {Piriou, Alain},
     title = {Probl\`emes aux limites g\'en\'eraux pour des op\'erateurs diff\'erentiels paraboliques dans un domaine born\'e},
     journal = {Annales de l'Institut Fourier},
     pages = {59--78},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     number = {1},
     year = {1971},
     doi = {10.5802/aif.362},
     mrnumber = {44 #5604},
     zbl = {0202.11103},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.362/}
}
TY  - JOUR
AU  - Piriou, Alain
TI  - Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné
JO  - Annales de l'Institut Fourier
PY  - 1971
SP  - 59
EP  - 78
VL  - 21
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.362/
DO  - 10.5802/aif.362
LA  - fr
ID  - AIF_1971__21_1_59_0
ER  - 
%0 Journal Article
%A Piriou, Alain
%T Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné
%J Annales de l'Institut Fourier
%D 1971
%P 59-78
%V 21
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.362/
%R 10.5802/aif.362
%G fr
%F AIF_1971__21_1_59_0
Piriou, Alain. Problèmes aux limites généraux pour des opérateurs différentiels paraboliques dans un domaine borné. Annales de l'Institut Fourier, Tome 21 (1971) no. 1, pp. 59-78. doi : 10.5802/aif.362. https://www.numdam.org/articles/10.5802/aif.362/

[1] M.S. Agranovich et M.I. Visik, Uspechi Matem. Nauk, XIX, 3, 53-161. Russian Math. Surveys, 19, (1964), 53-157. | Zbl

[2] L. Hörmander, Proceedings of Symposia in pure Math., 10, AMS (1967) 138-183. | Zbl

[3] L. Hörmander, Ann. of Math., 83, (1966), 129-209. | Zbl

[4] L. Hörmander, Cours à Stanford University (Juillet 1967).

[5] L. Hörmander, Springer-Verlag (1964).

[6] L. Hörmander, Fourier Integral Operators (à paraître).

[7] C. Hunt et A. Piriou, Comptes Rendus, Série A, (1969), 214-217. | Zbl

[8] P. Kree, Annali di Matematica, LXXXIII, (1969), 113-132.

[9] P. Kree, Conf. del Sem. di Mat. dell'Univ. di Bari, 114-115 (1968). | Zbl

[10] P. Kree, Comptes Rendus, Série A, (1969), 699-701. | Zbl

[11] J.E. Lewis, Journal of Math. Analysis and Application, 26, (1969) 479-511. | Zbl

[12] J.L. Lions et E. Magenes, Dunod (Paris), (1968), tome 2. | Zbl

[13] A. Piriou, Comptes Rendus, série A, (1969), 692-695. | Zbl

[14] A. Piriou, Annales de l'Institut Fourier, 20, 1, (1970). | Numdam | Zbl

[15] M.I. Visik et G.I. Eskin, Mat. Sbornik, 71 (113), (1966), 162-190. | Zbl

  • Taira, Kazuaki Fundamental Solution Operator for the Cauchy Problem on a Manifold, Functional Analytic Methods for Heat Green Operators, Volume 2354 (2024), p. 383 | DOI:10.1007/978-3-031-66612-4_15
  • Mahmoudi, M. Hedayat; Schulze, B.-W. Volterra Operators with Asymptotics on Manifolds with Edge, Analysis of Pseudo-Differential Operators (2019), p. 121 | DOI:10.1007/978-3-030-05168-6_6
  • Chang, Der-Chen; Hedayat Mahmoudi, M.; Schulze, Bert-Wolfgang Volterra operators in the edge-calculus, Analysis and Mathematical Physics, Volume 8 (2018) no. 4, p. 551 | DOI:10.1007/s13324-018-0238-4
  • Antoniouk, Alexandra; Tarkhanov, Nikolai The Dirichlet Problem for the Heat Equation in Domains with Cuspidal Points on the Boundary, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics (2013), p. 1 | DOI:10.1007/978-3-0348-0537-7_1
  • Denk, Robert; Seiler, Jörg On the maximal L p -regularity of parabolic mixed-order systems, Journal of Evolution Equations, Volume 11 (2011) no. 2, p. 371 | DOI:10.1007/s00028-010-0095-6
  • Ponge, Raphaël; Mikayelyan, H. On the asymptotic completeness of the Volterra calculus, Journal d'Analyse Mathématique, Volume 94 (2004) no. 1, p. 249 | DOI:10.1007/bf02789049
  • Anttila, Juha A spline collocation method for parabolic pseudodifferential equations, Journal of Computational and Applied Mathematics, Volume 140 (2002) no. 1-2, p. 41 | DOI:10.1016/s0377-0427(01)00401-0
  • Krainer, Thomas Volterra Families of Pseudodifferential Operators, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 1 | DOI:10.1007/978-3-0348-8191-3_1
  • Krainer, Thomas The Calculus of Volterra Mellin Pseudodifferential Operators with Operator-valued Symbols, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 47 | DOI:10.1007/978-3-0348-8191-3_2
  • Krainer, Thomas; Schulze, Bert-Wolfgang On the Inverse of Parabolic Systems of Partial Differential Equations of General Form in an Infinite Space-Time Cylinder, Parabolicity, Volterra Calculus, and Conical Singularities (2002), p. 93 | DOI:10.1007/978-3-0348-8191-3_3
  • Costabel, M.; Saranen, J. Parabolic boundary integral operators symbolic representation and basic properties, Integral Equations and Operator Theory, Volume 40 (2001) no. 2, p. 185 | DOI:10.1007/bf01301465
  • Buchholz, Thilo Anisotropic Edge Pseudo — Differential Operators with Discrete Asymptotics, Mathematische Nachrichten, Volume 184 (1997) no. 1, p. 73 | DOI:10.1002/mana.19971840104
  • Grubb, Gerd Parameter-elliptic and parabolic pseudodifferential boundary problems in globalL p sobolev spaces, Mathematische Zeitschrift, Volume 218 (1995) no. 1, p. 43 | DOI:10.1007/bf02571889
  • Costabel, Martin Developments in Boundary Element Methods for Time-Dependent Problems, Problems and Methods in Mathematical Physics (1994), p. 17 | DOI:10.1007/978-3-322-85161-1_2
  • Hsiao, George C.; Saranen, J. Boundary integral solution of the two‐dimensional heat equation, Mathematical Methods in the Applied Sciences, Volume 16 (1993) no. 2, p. 87 | DOI:10.1002/mma.1670160203
  • Costabel, Martin Boundary integral operators for the heat equation, Integral Equations and Operator Theory, Volume 13 (1990) no. 4, p. 498 | DOI:10.1007/bf01210400
  • Murthy, M. K. Venkatesha Pseudo-Differential Operators of Volterra Type on Spaces of Ultra Distributions and Parabolic Mixed Problems, Partial Differential Equations and the Calculus of Variations (1989), p. 851 | DOI:10.1007/978-1-4615-9831-2_15
  • Murthy, M. K. Venkatesha Pseudo-Differential Operators of Volterra Type on Spaces of Ultra Distributions and Parabolic Mixed Problems, Partial Differential Equations and the Calculus of Variations (1989), p. 851 | DOI:10.1007/978-1-4684-9196-8_36
  • Schulze, Bert‐Wolfgang Degenerate Boundary Value Problems for Parabolic Pseudo‐Differential Operators, Mathematische Nachrichten, Volume 121 (1985) no. 1, p. 71 | DOI:10.1002/mana.19851210109
  • Lions, J. L.; Magenes, E. Parabolic Evolution Operators. Hilbert Theory, Non-Homogeneous Boundary Value Problems and Applications (1972), p. 1 | DOI:10.1007/978-3-642-65217-2_1

Cité par 20 documents. Sources : Crossref