The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition
Annales de l'Institut Fourier, Tome 26 (1976) no. 4, pp. 207-237.

Nous prouvons que le problème de Levi pour certains espaces localement convexes et séparés E sur C admettant une décomposition de Schauder de dimension finie (par exemple pour les espaces de Fréchet ou de Silva avec une base de Schauder) a une solution, c’est-à-dire tout domaine pseudo-convexe étalé sur E est un domaine d’existence d’une fonction analytique. Nous démontrons également qu’un domaine pseudoconvexe étalé sur un espace de Fréchet ou de Silva avec une décomposition de Schauder de dimension finie est holomorphiquement convexe et satisfait à un théorème d’approximation du type d’Oka-Weil.

It is proved that the Levi problem for certain locally convex Hausdorff spaces E over C with a finite dimensional Schauder decomposition (for example for Fréchet or Silva spaces with a Schauder basis) the Levi problem has a solution, i.e. every pseudoconvex domain spread over E is a domain of existence of an analytic function. It is also shown that a pseudoconvex domain spread over a Fréchet space or a Silva space with a finite dimensional Schauder decomposition is holomorphically convex and satisfies an approximation theorem of the Oka-Weil type.

@article{AIF_1976__26_4_207_0,
     author = {Schottenloher, Martin},
     title = {The {Levi} problem for domains spread over locally convex spaces with a finite dimensional {Schauder} decomposition},
     journal = {Annales de l'Institut Fourier},
     pages = {207--237},
     publisher = {Imprimerie Durand},
     address = {Chartres},
     volume = {26},
     number = {4},
     year = {1976},
     doi = {10.5802/aif.638},
     mrnumber = {58 #1262},
     zbl = {0309.32013},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.638/}
}
TY  - JOUR
AU  - Schottenloher, Martin
TI  - The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition
JO  - Annales de l'Institut Fourier
PY  - 1976
SP  - 207
EP  - 237
VL  - 26
IS  - 4
PB  - Imprimerie Durand
PP  - Chartres
UR  - http://archive.numdam.org/articles/10.5802/aif.638/
DO  - 10.5802/aif.638
LA  - en
ID  - AIF_1976__26_4_207_0
ER  - 
%0 Journal Article
%A Schottenloher, Martin
%T The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition
%J Annales de l'Institut Fourier
%D 1976
%P 207-237
%V 26
%N 4
%I Imprimerie Durand
%C Chartres
%U http://archive.numdam.org/articles/10.5802/aif.638/
%R 10.5802/aif.638
%G en
%F AIF_1976__26_4_207_0
Schottenloher, Martin. The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition. Annales de l'Institut Fourier, Tome 26 (1976) no. 4, pp. 207-237. doi : 10.5802/aif.638. http://archive.numdam.org/articles/10.5802/aif.638/

[1] V. Aurich, The spectrum as envelope of holomorphy of a domain over an arbitrary product of complex lines. In : Proceedings on Infinite Dimensional Holomorphy (Lexington 1973), pp. 109-122. Springer Lecture Notes, 364 (1974). | Zbl

[2] G. Goeuré, Analytic functions and manifolds in infinite dimensional spaces. Amsterdam : North-Holland 1974. | Zbl

[3] S. Dineen, Holomorphic functions on locally convex topological vector spaces II. Pseudoconvex domains, Ann. Inst. Fourier, 23 (1973), 155-185. | Numdam | MR | Zbl

[4] S. Dineen, Surieties and holomorphic functions in infinite dimensions. Bull. Soc. math. France, 103 (1975), 441-509. | Numdam | Zbl

[5] S. Dineen et Ph. Noverraz, Le problème de Levi dans certains espaces vectoriels topologiques localement convexes, C.R. Acad. Sci., Paris, 278, A (1974), 693-695. And in full length with Schottenloher, M. : Bull. Soc. math. France, 104 (1976), 87-97. | Numdam | Zbl

[6] K. Floret and J. Wloka, Einführung in die Theorie der lokalkonvexen Räume, Springer Lecture Notes, 56 (1968). | MR | Zbl

[7] T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc., 41 (1973), 197-200. | MR | Zbl

[8] L. Gruman, The Levi problem in certain infinite dimensional vector spaces, Ill. J. Math., 18 (1974), 20-26. | MR | Zbl

[9] L. Gruman et C. O. Kiselman, Le problème de Levi dans les espaces de Banach à base, C.R. Acad. Sci., Paris, 274, A (1972), 1296-1299. | MR | Zbl

[10] Y. Hervier, Sur le problème de Levi pour les espaces étalés banachiques, C.R. Acad. Sci., 275, A (1972), 821-824. | MR | Zbl

[11] A. Hirschowitz, Prolongement analytique en dimension infinie, Ann. Inst. Fourier, 22 (1972), 255-292. | Numdam | MR | Zbl

[12] L. Hörmander, An introduction to complex analysis in several variables, Princeton, Van Nostrand 1966. | Zbl

[13] B. Josefson, A counterexample to the Levi problem. In : Proceedings on Infinite Dimensional Holomorphy (Lexington 1973), pp. 168-177. Springer Lecture Notes, 364 (1974). | Zbl

[14] B. Josefson, Weak sequential convergence in the dual of a Banach space does not imply norm convergence. Arkiv för Mat., 13 (1975), 79-89. | MR | Zbl

[15] E. Ligocka, A local factorization of analytic functions and its applications, Studia Math., 47 (1973), 239-252. | MR | Zbl

[16] J. T. Marti, Introduction to the theory of bases, Springer Tracts in Natural Philosophy, 18 (1969). | MR | Zbl

[17] M. C. Matos, Domains of τ-holomorphy in a separable Banach space, Math. Ann., 195 (1972), 273-278. | MR | Zbl

[18] L. Nachbin, Uniformité holomorphe et type exponentiel. In : Sém. P. Lelong, 1970/1971, pp. 216-224. Springer Lecture Notes, 205 (1971). | Zbl

[19] Ph. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, Amsterdam, North-Holland, 1973. | Zbl

[20] Ph. Noverraz, Approximation of holomorphic or plurisubharmonic functions in certain Banach spaces. In : Proceedings on Infinite Dimensional Holomorphy (Lexington 1973), pp. 178-185. Springer Lecture Notes, 364 (1974). | Zbl

[21] Ph. Noverraz, Le problème de Levi dans certains espaces de Silva. Preprint.

[22] K. Oka, Domaines finis sans point critique intérieur, Jap. J. Math., 27 (1953), 97-155. | MR | Zbl

[23] A. Pelczynski and P. Wojtaszcyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math., 40 (1971), 91-108. | MR | Zbl

[24] R. Pomès, Solution du problème de Levi dans les espaces de Silva à base, C.R. Acad. Sci., Paris, 278, A (1974), 707-710. | MR | Zbl

[25] N. Popa, Sur le problème de Levi dans les espaces de Silva à base, C.R. Acad. Sci., Paris, 277, A (1973), 211-214. | MR | Zbl

[26] M. Schottenloher, Über analytische Fortsetzung in Banachräumen, Math. Ann., 199 (1972), 313-336. | MR | Zbl

[27] M. Schottenloher, The envelope of holomorphy as a functor. In : Fonctions analytiques de plusieurs variables et analyse complexe (Coll. Intern. du C.N.R.S., Paris 1972), pp. 221-230. Paris : Gauthier-Villars 1974. | Zbl

[28] M. Schottenloher, Bounding sets in Banach spaces and regular classes of analytic functions. In : Functional Analysis and Applications (Recife 1972), pp. 109-122. Springer Lecture Notes, 384 (1974). | Zbl

[29] M. Schottenloher, Riemann domains. Basic results and open questions. In : Proceedings on Infinite Dimensional Holomorphy (Lexington 1973), pp. 196-212. Springer Lecture Notes, 364 (1974). | Zbl

[30] M. Schottenloher, Analytic continuation and regular classes in locally convex Hausdorff spaces, Port. Math., 33 (1974), 219-250. | MR | Zbl

[31] M. Schottenloher, Das Leviproblem in unendlichdimensionalen Räumen mit Schauderzerlegung. Habilitationsschrift, München 1974.

Cité par Sources :