Une nouvelle classe d'espaces de Banach vérifiant le théorème de Grothendieck
Annales de l'Institut Fourier, Tome 28 (1978) no. 1, pp. 69-90.

Soit W un espace 1 et soit R un sous-espace réflexif de dimension infinie de W. Nous montrons que le quotient W/R vérifie le théorème de Grothendieck, c’est-à-dire que tout opérateur de W/R dans un espace de Hilbert est 1-sommant; par ailleurs, W/R n’est pas un espace 1. Cela permet de répondre négativement à une question de Lindenstrauss-Pełczyński ainsi qu’à une question similaire de Grothendieck.

Let W be a 1-space, and let R be an infinite dimensional reflexive subspace of W. We show that the quotient W/R satisfies Grothendieck’s theorem, i.e. that every operator from W/R into a Hilbert space is 1-absolutely summing; besides, W/R is not a 1-space. This provides a negative answer to a question of Lindenstrauss-Pełczyński and to a similar question of Grothendieck.

@article{AIF_1978__28_1_69_0,
     author = {Pisier, Gilles},
     title = {Une nouvelle classe d'espaces de {Banach} v\'erifiant le th\'eor\`eme de {Grothendieck}},
     journal = {Annales de l'Institut Fourier},
     pages = {69--90},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {28},
     number = {1},
     year = {1978},
     doi = {10.5802/aif.681},
     mrnumber = {58 #7041},
     zbl = {0363.46019},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.681/}
}
TY  - JOUR
AU  - Pisier, Gilles
TI  - Une nouvelle classe d'espaces de Banach vérifiant le théorème de Grothendieck
JO  - Annales de l'Institut Fourier
PY  - 1978
SP  - 69
EP  - 90
VL  - 28
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.681/
DO  - 10.5802/aif.681
LA  - fr
ID  - AIF_1978__28_1_69_0
ER  - 
%0 Journal Article
%A Pisier, Gilles
%T Une nouvelle classe d'espaces de Banach vérifiant le théorème de Grothendieck
%J Annales de l'Institut Fourier
%D 1978
%P 69-90
%V 28
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.681/
%R 10.5802/aif.681
%G fr
%F AIF_1978__28_1_69_0
Pisier, Gilles. Une nouvelle classe d'espaces de Banach vérifiant le théorème de Grothendieck. Annales de l'Institut Fourier, Tome 28 (1978) no. 1, pp. 69-90. doi : 10.5802/aif.681. https://www.numdam.org/articles/10.5802/aif.681/

[1] A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Symp. on Linear Spaces, Jerusalem 1961. | MR | Zbl

[2] A. Dvoretzky et C.A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. (U.S.A.), 36 (1950), 192-197. | MR | Zbl

[3] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Matem., Sao Paulo, 8 (1956), 1-79. | MR | Zbl

[4] M.I. Kadec et A. Pelczynski, Bases, lacunary sequences and complemented subspaces in the spaces Lρ, Studia Math., 21 (1962), 161-176. | MR | Zbl

[5] J.L. Krivine, Théorèmes de factorisation dans les espaces réticulés, Séminaire Maurey-Schwartz 73-74, Exposé 22-23. | Numdam | Zbl

[6] J. Lindenstrauss, The geometric theory of the classical Banach spaces, Actes Congrès intern. Math., Nice (1970), Gauthiers-Villars, Paris, tome 2 p. 365-372. | MR | Zbl

[7] J. Lindenstrauss et A. Pelczynski, Absolutely summing operators in Lρ spaces and their applications, Studia Math., 29 (1968), 275-326. | MR | Zbl

[8] J. Lindenstrauss et H.P. Rosenthal, Automorphisms in cϑ, l1 and m, Israel J. Math., 7 (1969), 227-239. | MR | Zbl

[9] J. Lindenstrauss et H.P. Rosenthal, The Lρ spaces, Israel J. Math., 7 (1969) 325-349. | MR | Zbl

[10] J. Lindenstrauss et M. Zippin, Banach spaces with sufficiently many Boolean algebras of projections, Journal Math. Anal. and Appl., 25 (1969), 309-320. | MR | Zbl

[11] J.L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. I.H.E.S., 19 (1963), 5-68. | Numdam | MR | Zbl

[12] B. Maurey, Une nouvelle démonstration d'un théorème de Grothendieck, Séminaire Maurey-Schwartz 73-74, exposé 22. | Numdam | Zbl

[13] B. Maurey, Théorèmes de factorisation pour les opérateurs à valeurs dans un espace Lρ, Astérisque, Soc. Math. France, (1974) n° 11. | Numdam | MR | Zbl

[14] B. Maurey et G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math., 58 (1976), 45-90. | MR | Zbl

[15] A. Pelczynski, p-integral operators commuting with group representations and examples of quasi p-integral operators which are not p-integral, Studia Math., 33 (1969), 63-70. | MR | Zbl

[16] A. Pietsch, Absolute p-summierende Abbildungen in normierten raümen, Studia Math., 28 (1967), 333-353. | MR | Zbl

[17] H.P. Rosenthal, On injective Banach spaces and the spaces L∞(µ) for finite measures µ, Acta Math., 124 (1970), 205-248. | MR | Zbl

[18] H.P. Rosenthal, On subspaces of Lp, Annals of Math., 97 (1973), 344-373. | MR | Zbl

[19] W. Rudin, Trigonometric series with gaps, Journal Math. Mech., 9 (1960), 203-227. | MR | Zbl

[20] A. Tonge, Banach algebras and absolutely summing operators, Math. Proc. Cambridge Phil. Soc., 80 (1976), 465-473. | MR | Zbl

[21] N.Th. Varopoulos, A theorem on operator algebras, Math. Scand., 37, (1975), 173-182. | MR | Zbl

  • Mezrag, Lahcène Weak Grothendieck′s theorem, International Journal of Mathematics and Mathematical Sciences, Volume 2006 (2006) no. 1 | DOI:10.1155/ijmms/2006/43875
  • Diestel, Joe; Jarchow, Hans; Pietsch, Albrecht Operator Ideals, Volume 1 (2001), p. 437 | DOI:10.1016/s1874-5849(01)80013-9
  • Makarov, B. M. Stably Dominated and Stably Regular Operators, Vector Lattices and Integral Operators (1996), p. 157 | DOI:10.1007/978-94-009-0195-7_3
  • Bibliography, Tensor Norms and Operator Ideals, Volume 176 (1993), p. 527 | DOI:10.1016/s0304-0208(08)70298-6
  • Chu, Cho-Ho; Iochum, Bruno; Loupias, Guy Grothendieck's theorem and factorization of operators in Jordan triples, Mathematische Annalen, Volume 284 (1989) no. 1, p. 41 | DOI:10.1007/bf01443503
  • Bourgain, J. New Banach space properties of the disc algebra and H∞, Acta Mathematica, Volume 152 (1984) no. 0, p. 1 | DOI:10.1007/bf02392189
  • Jarchow, Hans Remarks on a characterization of nuclearity, Archiv der Mathematik, Volume 43 (1984) no. 5, p. 469 | DOI:10.1007/bf01193856
  • Jarchow, Hans On Certain Locally Convex Topologies on Banach Spaces, Functional Analysis: Surveys and Recent Results III, Proceedings of the Conference on Functional Analysis, Volume 90 (1984), p. 79 | DOI:10.1016/s0304-0208(08)71468-3
  • Jarchow, Hans The Three Space Problem and Ideals of Operators, Mathematische Nachrichten, Volume 119 (1984) no. 1, p. 121 | DOI:10.1002/mana.19841190110
  • Diestel, Joseph Grothendieck’s Inequality and the Grothendieck-Lindenstrauss-Pelczynski Cycle of Ideas, Sequences and Series in Banach Spaces, Volume 92 (1984), p. 173 | DOI:10.1007/978-1-4612-5200-9_10
  • Szarek, Stanislaw J. The finite dimensional basis problem with an appendix on nets of Grassmann manifolds, Acta Mathematica, Volume 151 (1983) no. 0, p. 153 | DOI:10.1007/bf02393205
  • Pisier, Gilles Counterexamples to a conjecture of Grothendieck, Acta Mathematica, Volume 151 (1983) no. 0, p. 181 | DOI:10.1007/bf02393206
  • Kislyakov, S. V. Two remarks concerning the equation Πp(Χ,·)=Ip(Χ,·), Journal of Soviet Mathematics, Volume 22 (1983) no. 6, p. 1783 | DOI:10.1007/bf01882578
  • Sidorenko, N. G. For which p and is the equation true?, Journal of Soviet Mathematics, Volume 22 (1983) no. 6, p. 1856 | DOI:10.1007/bf01882589
  • Jarchow, Hans; Ott, Rudolf On Trace Ideals, Mathematische Nachrichten, Volume 108 (1982) no. 1, p. 23 | DOI:10.1002/mana.19821080103
  • Pisier, Gilles Quotients of Banach spaces of cotype 𝑞, Proceedings of the American Mathematical Society, Volume 85 (1982) no. 1, p. 32 | DOI:10.1090/s0002-9939-1982-0647892-8
  • Kisliakov, S. V. What is needed for a O-absolutely summing operator to be nuclear?, Complex Analysis and Spectral Theory, Volume 864 (1981), p. 336 | DOI:10.1007/bfb0097001
  • Kwapien, S.; Pelczynski, A. Absolutely summing operators and translation invariant spaces of functions on compact abelian groups, Mathematische Nachrichten, Volume 94 (1980) no. 1, p. 303 | DOI:10.1002/mana.19800940118
  • Bibliography, Operator Ideals, Volume 20 (1980), p. 409 | DOI:10.1016/s0924-6509(09)70041-8

Cité par 19 documents. Sources : Crossref