Spherical summation: a problem of E.M. Stein
Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 147-152.

Écrivons $\left({T}_{R}^{\lambda }f\right)\stackrel{^}{}\left(\xi \right)=\left(1-|\xi {|}^{2}/{R}^{2}{\right)}_{+}^{\lambda }\stackrel{^}{f}\left(\xi \right)$. E. Stein a supposé que

 $\parallel {\left(\sum _{j}|{T}_{{R}_{j}}^{\lambda }{f}_{i}{|}^{2}\right)}^{1/2}{\parallel }_{p}\le C\parallel {\left(\sum _{j}|{f}_{j}{|}^{2}\right)}^{1/2}{\parallel }_{p}$

pour $\lambda >0$, $\frac{4}{3}\le p\le 4$ et $C={C}_{\lambda ,p}$. Nous démontrons cette conjecture. Nous démontrons aussi $f\left(x\right)={lim}_{j\to \infty }{T}_{{2}^{j}}^{\lambda }f\left(x\right)$ presque partout. Nous supposons seulement $\frac{4}{3+2\lambda }.

Writing $\left({T}_{R}^{\lambda }f\right)\stackrel{^}{}\left(\xi \right)=\left(1-|\xi {|}^{2}/{R}^{2}{\right)}_{+}^{\lambda }\stackrel{^}{f}\left(\xi \right)$. E. Stein conjectured

 $\parallel {\left(\sum _{j}|{T}_{{R}_{j}}^{\lambda }{f}_{i}{|}^{2}\right)}^{1/2}{\parallel }_{p}\le C\parallel {\left(\sum _{j}|{f}_{j}{|}^{2}\right)}^{1/2}{\parallel }_{p}$

for $\lambda >0$, $\frac{4}{3}\le p\le 4$ and $C={C}_{\lambda ,p}$. We prove this conjecture. We prove also $f\left(x\right)={lim}_{j\to \infty }{T}_{{2}^{j}}^{\lambda }f\left(x\right)$ a.e. We only assume $\frac{4}{3+2\lambda }.

@article{AIF_1981__31_3_147_0,
author = {Cordoba, Antonio and Lopez-Melero, B.},
title = {Spherical summation: a problem of E.M. Stein},
journal = {Annales de l'Institut Fourier},
pages = {147--152},
publisher = {Institut Fourier},
volume = {31},
number = {3},
year = {1981},
doi = {10.5802/aif.842},
zbl = {0464.42006},
mrnumber = {83g:42008},
language = {en},
url = {archive.numdam.org/item/AIF_1981__31_3_147_0/}
}
Cordoba, Antonio; Lopez-Melero, B. Spherical summation: a problem of E.M. Stein. Annales de l'Institut Fourier, Tome 31 (1981) no. 3, pp. 147-152. doi : 10.5802/aif.842. http://archive.numdam.org/item/AIF_1981__31_3_147_0/

[1] E.M. Stein, Some problems in harmonic analysis, Proc. Sym. Pure Math., Volume XXXV, Part. 1, (1979). | MR 80m:42027 | Zbl 0445.42006

[2] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math., 44 (1972), 288-299. | MR 50 #14052 | Zbl 0215.18303

[3] A. Cordoba, The Kakeya maximal function and the spherical summation multipliers, Am. J. of Math., Vol. 99, n° 1, (1977), 1-22. | MR 56 #6259 | Zbl 0384.42008

[4] A. Cordoba, Some remarks on the Littlewood-Paley theory, To appear, Rendiconti di Circolo Mat. di Palermo. | Zbl 0506.42022

[5] C. Fefferman, The multiplier problem for the ball, Annals of Math., 94 (1971), 330-336. | MR 45 #5661 | Zbl 0234.42009