Soit la matrice de diffusion, associée à l’équation des ondes dans l’extérieur d’un obstacle non-captif , avec condition de Dirichlet ou Neumann sur . La fonction , dite phase de diffusion, est déterminée par l’égalité . On démontre que admet un développement asymptotique et on calcule les trois premiers coefficients. Notre résultat prouve la conjecture de Majda et Ralston pour des obstacles non-captifs.
Let be the scattering matrix related to the wave equation in the exterior of a non-trapping obstacle , with Dirichlet or Neumann boundary conditions on . The function , called scattering phase, is determined from the equality . We show that has an asymptotic expansion as and we compute the first three coefficients. Our result proves the conjecture of Majda and Ralston for non-trapping obstacles.
@article{AIF_1982__32_3_111_0, author = {Petkov, Veselin and Popov, Georgi}, title = {Asymptotic behaviour of the scattering phase for non-trapping obstacles}, journal = {Annales de l'Institut Fourier}, pages = {111--149}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {3}, year = {1982}, doi = {10.5802/aif.882}, mrnumber = {85c:35070}, zbl = {0476.35014}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.882/} }
TY - JOUR AU - Petkov, Veselin AU - Popov, Georgi TI - Asymptotic behaviour of the scattering phase for non-trapping obstacles JO - Annales de l'Institut Fourier PY - 1982 SP - 111 EP - 149 VL - 32 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.882/ DO - 10.5802/aif.882 LA - en ID - AIF_1982__32_3_111_0 ER -
%0 Journal Article %A Petkov, Veselin %A Popov, Georgi %T Asymptotic behaviour of the scattering phase for non-trapping obstacles %J Annales de l'Institut Fourier %D 1982 %P 111-149 %V 32 %N 3 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.882/ %R 10.5802/aif.882 %G en %F AIF_1982__32_3_111_0
Petkov, Veselin; Popov, Georgi. Asymptotic behaviour of the scattering phase for non-trapping obstacles. Annales de l'Institut Fourier, Tome 32 (1982) no. 3, pp. 111-149. doi : 10.5802/aif.882. http://archive.numdam.org/articles/10.5802/aif.882/
[1] The propagation of singularities along gliding rays, Invent, Math., 41 (1977), 197-232. | MR | Zbl
and ,[2] La relation de Poisson pour l'équation des ondes dans un ouvert non-borné. Application à la théorie de la diffusion, preprint. | Numdam | Zbl
, et ,[3] Relation de Poisson pour l'équation des ondes dans un ouvert non-borné, Séminaire Goulaouic-Schwartz, 1979-1980, exposé n° 13. | Numdam | Zbl
, et ,[4] Perturbation of the spectrum of a singular elliptic operator under the variation of boundaries and boundary conditions, Dokl. Akad. Nauk SSSR, 137 (1961), 761-763 (in Russian); Soviet Math. Dokl., 2 (1961), 326-328. | Zbl
,[5] Perturbation of the continuous spectrum of a singular elliptic operator for changing boundary and boundary conditions, Vestnik Leningrad Univ., 1 (1962), 22-55 (in Russian).
,[6] On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 (1962), 475-478 (in Russian). | MR | Zbl
and ,[7] Scattering plane waves, spectral asymptotics and trace formulas in exterior problems, Dokl. Akad. Nauk SSSR, 197 (1971), 999-1002 (in Russian). | MR | Zbl
,[8] Une formule de trace pour l'opérateur de Schrödinger dans R3, Ann. Scient. Ec. Norm. Sup., 14 (1981), 27-39. | Numdam | MR | Zbl
,[9] Uber die Eigenwerte bei den Differentialgleichungen der mathematishen Physik, Math. Z., 7 (1920), 1-57. | JFM
,[10] Classical scattering theory with a trace condition, Dissertation, Princeton University, 1976.
,[11] Introduction to the Theory of Linear Non-selfadjoint Operators, AMS Translations, vol 18, Providence 1969. | MR | Zbl
and ,[12] Une formule de trace pour l'opérateur de Schrödinger dans Rn, thèse, Université Scient. et Medicale Grenoble, 1981.
,[13] On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary, Functional Anal. i Pril., 14, n° 2 (1980), 25-34 (in Russian). | MR | Zbl
,[14] Sharp spectral asymptotics for the Laplace-Beltrami operator under general ellipic boundary conditions, Functional Anal i Pril., 15, n° 1 (1981), 74-75 (in Russian). | Zbl
,[15] Asymptotic behavior of the scattering phase for exterior domains, Comm. in P.D.E., 3 (1978), 1165-1195. | MR | Zbl
and ,[16] Monotonicy theorems in scattering theory, Hadronic Journal, 1 (1978), 134-154. | MR | Zbl
,[17] On the trace formula in the theory of perturbation, Mat. Sb., 33 (75) (1953), 597-626 (in Russian).
,[18] On perturbation determinants and a trace formula for unitary and selfadjoint operators, Dokl. Akad. Nauk SSSR, 144 (1962), 268-271. | MR | Zbl
,[19] Scattering theory, Academic Press, 1967. | Zbl
and ,[20] Scattering theory for the wave equation in even space dimensions, Indiana Univ. Math. J., 22 (1972), 101-134. | MR | Zbl
and ,[21] The time delay operator and a related trace formula, Topics in Functional Analysis, edited by Gohberg and M. Kac, Academic Press, 1978, p. 197-215. | MR | Zbl
and ,[22] A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math., 30 (1977), 165-194. | MR | Zbl
,[23] Inverse scattering problems for transparant obstacles, electromagnetic waves and hyperbolic systems, Comm. in P.D.E., 2 (1977), 395-433. | MR | Zbl
and ,[24] An analogue of Weyl's theorem for unbounded domains, I, II, III, Duke Math. J., 45 (1978), 183-196, 513-536 & 46, (1979), 725-731. | Zbl
and ,[25] Curvature and the eigenvalues of the Laplacian, J. Diff. Geometry, 1, (1967), 43-69. | MR | Zbl
and ,[26] Singularities of boundary value problems I, Comm. Pure Appl. Math., 31, (1978), 593-617. | MR | Zbl
and ,[27] Singularities of boundary value problems II, Comm. Pure Appl. Math., 35 (1982), 129-168. | MR | Zbl
and ,[28] Propagation de singularités pour des problèmes aux limites d'ordre 2, Séminaire Goulaouic-Schwartz, 1977-1978, exposé 15. | Numdam | Zbl
et ,[29] Singularities and energy decay in acoustical scattering, Duke Math. J., 46 (1979), 43-59. | MR | Zbl
,[30] Forward scattering by a convex obstacle, Comm. Pure Appl. Math., 33 (1980), 461-499. | MR | Zbl
,[31] Asymptotique de la phase de diffusion pour des domaines non-convexes, C.R. Acad. Sc., Paris, 292 (1981), 275-277. | MR | Zbl
et ,[32] Comportement asymptotique de la phase de diffusion pour des obstacles non-convexes, Séminaire Goulaouic-Meyer-Schwartz, 1980-1981, Exposé 13. | Numdam | Zbl
,[33] Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres relatifs au laplacien, Math. Scand., 48 (1981), 5-38. | MR | Zbl
,[34] Diffraction by convex bodies, Séminaire Goulaouic-Schwartz, 1978-1979, Exposé 23. | Numdam | Zbl
,[35] Propagation of singularities and the scattering matrix, In Singularities in boundary value problems, edited by H.G. Garnir, D. Reidel Publ. Company, 1981, p. 169-184. | MR | Zbl
,[36] Note on the decay of acoustic waves, Duke Math. J., 46 (1979), 799-804. | MR | Zbl
,[37] Scattering theory, Academic Press, 1979. | Zbl
and ,[38] Analysis of operators, Academic Press, 1978. | Zbl
and ,[39] A sharp asymptotic remainder estimate for the eigen-values of the laplacian in a domain in R3, Adv. in Math., 29 (1978), 244-269. | MR | Zbl
,[40] On the short wave asymptotic behavior as t → ∞ of solutions of nonstationary problems, Uspehi Mat. Nauk, 30, n° 2 (1975), 1-55 (in Russian) ; Russian Math. Surveys, 30 (1975), 1-58. | Zbl
,[41] Uber die Asymptotische Verteilung der Eigenwerte, Göttinger Nachr., (1911), 110-117. | JFM
,Cité par Sources :