Families of functions dominated by distributions of C-classes of mappings
Annales de l'Institut Fourier, Volume 33 (1983) no. 2, p. 199-217
A subsheaf of the sheaf Ω of germs C functions over an open subset Ω of R n is called a sheaf of sub C function. Comparing with the investigations of sheaves of ideals of Ω , we study the finite presentability of certain sheaves of sub C -rings. Especially we treat the sheaf defined by the distribution of Mather’s 𝒞-classes of a C mapping.
Un sous-faisceau du faisceau Ω des germes de fonctions C sur un ouvert Ω de R n est appelé un faisceau de sous-anneaux C s’il est fermé pour l’opération définie par la composition avec toute fonction C . En comparant avec les investigations de faisceaux d’idéaux de Ω , on étudie la présentabilité finie de certains faisceaux de sous-anneaux C . En particulier, on traite le faisceau défini par la distribution de 𝒞-classes de Mather d’une application C .
@article{AIF_1983__33_2_199_0,
     author = {Ishikawa, Goo},
     title = {Families of functions dominated by distributions of $C$-classes of mappings},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {33},
     number = {2},
     year = {1983},
     pages = {199-217},
     doi = {10.5802/aif.924},
     zbl = {0488.58004},
     mrnumber = {84g:58014},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1983__33_2_199_0}
}
Ishikawa, Goo. Families of functions dominated by distributions of $C$-classes of mappings. Annales de l'Institut Fourier, Volume 33 (1983) no. 2, pp. 199-217. doi : 10.5802/aif.924. http://www.numdam.org/item/AIF_1983__33_2_199_0/

[1] E. J. Dubuc, C∞ schemes, Amer. J. Math., 103 (1981), 683-690. | MR 83a:58004 | Zbl 0483.58003

[2] A. M. Gabrielov, Formal relations between analytic functions, Math. USSR. Izv., 7 (1973), 1056-1088. | Zbl 0297.32007

[3] S. Izumi, Zeros of ideals of Cr functions, J. Math. Kyoto Univ., 17 (1977), 413-424. | MR 55 #13470 | Zbl 0367.58002

[4] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, (1966).

[5] J. N. Mather, Stability of C∞ mappings, III : Finitely determined map-germs, Publ. Math. I.H.E.S., 35 (1969), 127-156. | Numdam | Zbl 0159.25001

[6] J. Merrien, Applications des faiseaux analytiques semi-cohérents aux fonctions différentiables, Ann. Inst. Fourier, 31-1 (1981), 63-82. | Numdam | MR 82g:58015 | Zbl 0462.58005

[7] R. Moussu and J. Cl. Tougeron, Fonctions composées analytiques et différentiables, C.R.A.S., Paris, 282 (1976), 1237-1240. | MR 53 #13628 | Zbl 0334.32012

[8] J. Cl. Tougeron, An extension of Whitney's spectral theorem, Publ. Math. I.H.E.S., 40 (1971), 139-148. | Numdam | MR 51 #6872 | Zbl 0239.46023

[9] J. Cl. Tougeron, Idéaux de fonctions différentiables, Ergebnisse Der Mathematik, Band 71, Springer (1972). | MR 55 #13472 | Zbl 0251.58001