Nous présentons un traitement analytique des congruences de Rokhlin R2 en calculant la limite adiabatique d’invariants d’opérateurs de Dirac opérant sur des fibrés en cercles. Une extension de ce résultat en dimension supérieure est également obtenue.
We present a direct analytic treatment of the Rokhlin congruence formula R2 by calculating the adiabatic limit of -invariants of Dirac operators on circle bundles. Extensions to higher dimensions are obtained.
@article{AIF_1994__44_1_249_0, author = {Zhang, Weiping}, title = {Circle bundles, adiabatic limits of $\eta $-invariants and {Rokhlin} congruences}, journal = {Annales de l'Institut Fourier}, pages = {249--270}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {44}, number = {1}, year = {1994}, doi = {10.5802/aif.1396}, mrnumber = {95h:58127}, zbl = {0792.57012}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1396/} }
TY - JOUR AU - Zhang, Weiping TI - Circle bundles, adiabatic limits of $\eta $-invariants and Rokhlin congruences JO - Annales de l'Institut Fourier PY - 1994 SP - 249 EP - 270 VL - 44 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1396/ DO - 10.5802/aif.1396 LA - en ID - AIF_1994__44_1_249_0 ER -
%0 Journal Article %A Zhang, Weiping %T Circle bundles, adiabatic limits of $\eta $-invariants and Rokhlin congruences %J Annales de l'Institut Fourier %D 1994 %P 249-270 %V 44 %N 1 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.1396/ %R 10.5802/aif.1396 %G en %F AIF_1994__44_1_249_0
Zhang, Weiping. Circle bundles, adiabatic limits of $\eta $-invariants and Rokhlin congruences. Annales de l'Institut Fourier, Tome 44 (1994) no. 1, pp. 249-270. doi : 10.5802/aif.1396. http://archive.numdam.org/articles/10.5802/aif.1396/
[AGW]Gravitational anomalies, Nuc. Phys., B 234 (1983), 269-330.
and ,[A]Riemann surfaces and spin structures, Ann. Sci. Ecole Norm. Sup., 4 (1971), 42-62. | Numdam | MR | Zbl
,[ABS]Clifford modules, Topology, 3 (1964, Suppl.), 3-38. | MR | Zbl
, , and ,[AH]Riemann-Roch theorems for differentiable manifolds, Bull. AMS, 65 (1959), 276-281. | MR | Zbl
and ,[APS]Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43-69. | MR | Zbl
, , and ,[BeGeV]Heat kernels and Dirac operators, Springer-Verlag (1992). | MR | Zbl
, and ,[B]The index theorem for families of Dirac operators : two heat equation proofs, Invent. Math., 83 (1986), 91-151. | MR | Zbl
,[BC1]η-invariants and their adiabatic limits, JAMS, 2 (1989), 33-70. | MR | Zbl
and ,[BC2]Transgressed Euler classes of SL (2n, ℤ) vector bundles, adiabatic limits of eta invariants and special values of L-functions, Ann. Sci. Ecole Norm. Sup., Série 4, 25 (1992), 335-391. | Numdam | Zbl
and ,[BZ]Real embeddings and eta invariants, Math. Ann., 295 (1993), 661-684. | MR | Zbl
and ,[Br]Generalizations of the Kervaire invariant, Ann. Math., 95 (1972), 368-383. | MR | Zbl
,[D]Adiabatic limits, nonmultiplicity of signature, and Leray spectral sequence, JAMS, 4 (1991), 265-321. | Zbl
,[ESV]Characteristic divisors on complex manifolds, J. reine angew. Math., 424 (1992), 17-30. | MR | Zbl
, and ,[F]A pinȃ-cobordism invariant and a generalization of the Rokhlin signature congruence, Leningrad Math. J., 2 (1991), 917-924. | MR | Zbl
,[G]The eta invariant for even dimensional pinc manifolds, Adv. Math., 58 (1985), 243-284. | MR | Zbl
,[GM]Une extension d'un théorème de Rokhlin sur la signature, C.R. Acad. Sci. Paris, Série A., 285 (1977), 95-98. | MR | Zbl
and ,[J]Spin structures and quadratic forms on surfaces, J. London Math. Soc., 22 (1980), 365-373. | MR | Zbl
,[KT]Pin structures on low-dimensional manifolds, in Geometry of Low-dimensional Manifolds, vol. 2, 177-242. Ed. S.K. Donaldson and C.B. Thomas, Cambridge Univ. Press (1990). | MR | Zbl
and ,[L]Elliptic cohomology and modular forms. in Elliptic Curves and Modular Forms in Topology, 55-68. Ed. P.S. Landweber, Lecture Notes in Math. vol., 1326, Springer-Verlag (1988). | MR | Zbl
,[O1]Signature modulo 16, invariants de Kervaire généralisés et nombres caractéristiques dans la K-théorie réelle, Supplément au Bull. Soc. Math. France, 109 (1981), mémoire n° 5. | Numdam | Zbl
,[O2]Elliptic genera, modular forms over KO*, and the Brown-Kervaire invariants, Math. Z., 206 (1991), 277-291. | MR | Zbl
,[R1]New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk. S.S.S.R., 84 (1952), 221-224. | Zbl
,[R2]Proof of a conjecture of Gudkov, Funct. Anal. Appl., 6 (1972), 136-138. | Zbl
,[S]Exotic structures on 4-manifolds detected by spectral invariants, Invent. Math., 94 (1988), 147-162. | MR | Zbl
,[W]Elliptic genera and quantum field theory, Comm. Math. Phys., 109 (1987), 525-536. | MR | Zbl
,[Z1]η-invariants and Rokhlin congruences, C.R.A.S. Paris, Série A, 315 (1992), 305-308. | MR | Zbl
,[Z2]Elliptic genera and Rokhlin congruences, Preprint IHES/M/92/76.
,Cité par Sources :