Le groupe affine d’un corps local agit sur l’arbre (l’immeuble de Bruhat-Tits de ) en ayant un point fixe dans l’espace des bouts . Plus généralement, nous définissons le groupe affine d’un arbre homogène comme le groupe de tous les automorphismes de ayant un point fixe commun dans , et établissons les principales propriétés asymptotiques des produits aléatoires dans : (1) la loi des grands nombres et le théorème limite central; (2) la convergence vers et l’existence d’une solution au problème de Dirichlet à l’infini; (3) l’identification de la frontière de Poisson avec donnant une description de l’espace des fonctions -harmoniques bornées. Les méthodes utilisées sont étroitement reliées aux propriétés géométriques des arbres homogènes analogues à celles des espaces symétriques de rang un.
The affine group of a local field acts on the tree (the Bruhat-Tits building of ) with a fixed point in the space of ends . More generally, we define the affine group of any homogeneous tree as the group of all automorphisms of with a common fixed point in , and establish main asymptotic properties of random products in : (1) law of large numbers and central limit theorem; (2) convergence to and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary with , which gives a description of the space of bounded -harmonic functions. Our methods strongly rely on geometric properties of homogeneous trees as discrete counterparts of rank one symmetric spaces.
@article{AIF_1994__44_4_1243_0, author = {Cartwright, Donald I. and Kaimanovich, Vadim A. and Woess, Wolfgang}, title = {Random walks on the affine group of local fields and of homogeneous trees}, journal = {Annales de l'Institut Fourier}, pages = {1243--1288}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {44}, number = {4}, year = {1994}, doi = {10.5802/aif.1433}, mrnumber = {96f:60121}, zbl = {0809.60010}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1433/} }
TY - JOUR AU - Cartwright, Donald I. AU - Kaimanovich, Vadim A. AU - Woess, Wolfgang TI - Random walks on the affine group of local fields and of homogeneous trees JO - Annales de l'Institut Fourier PY - 1994 SP - 1243 EP - 1288 VL - 44 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1433/ DO - 10.5802/aif.1433 LA - en ID - AIF_1994__44_4_1243_0 ER -
%0 Journal Article %A Cartwright, Donald I. %A Kaimanovich, Vadim A. %A Woess, Wolfgang %T Random walks on the affine group of local fields and of homogeneous trees %J Annales de l'Institut Fourier %D 1994 %P 1243-1288 %V 44 %N 4 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1433/ %R 10.5802/aif.1433 %G en %F AIF_1994__44_4_1243_0
Cartwright, Donald I.; Kaimanovich, Vadim A.; Woess, Wolfgang. Random walks on the affine group of local fields and of homogeneous trees. Annales de l'Institut Fourier, Tome 44 (1994) no. 4, pp. 1243-1288. doi : 10.5802/aif.1433. http://archive.numdam.org/articles/10.5802/aif.1433/
[Az] Espaces de Poisson des Groupes Localement Compacts, Lect. Notes in Math., 148, Springer Berlin, 1970. | MR | Zbl
,[Be] The Geometry of Discrete Groups, Springer New York, 1983. | MR | Zbl
,[Bi] Convergence of Probability Measures, Wiley, New York, 1968. | MR | Zbl
,[CS] Convergence to ends for random walks on the automorphism group of a tree, Proc. Amer. Math. Soc., 107 (1989), 817-823. | MR | Zbl
and ,[Ca] Local Fields, Cambridge University Press, Cambridge, 1986. | MR | Zbl
,[Ch] Arbres, espaces ultramétriques, et bases de structure uniforme, Groupes d'Automorphismes d'Arbres, Thèse, Univ. Paris-Sud, 1993, p. 173-177.
,[De] Quelques applications du théorème ergodique sous-additif, Astérisque, 74 (1980), 183-201. | Numdam | MR | Zbl
,[E1] Étude du renouvellement sur le groupe affine de la droite réelle, Ann. Sci. Univ. Clermont, 65 (1977), 47-62. | Numdam | MR | Zbl
,[E2] Fonctions harmoniques positives sur le groupe affine, Probability Measures on Groups (H. Heyer, ed.), Lect. Notes in Math., 706, Springer, Berlin, 1978, 96-110. | MR | Zbl
,[E3] Comportement asymptotique du noyau potentiel sur les groupes de Lie, Annales Éc. Norm. Sup., 15 (1982), 257-364. | Numdam | MR | Zbl
,[Fe] An Introduction to Probability Theory and its Applications, Vol II, Wiley, New York, 1966. | MR | Zbl
,[Fi] An example in finite harmonic analysis with application to diffusion in compact ultrametric spaces, preprint, Univ. Roma "La Sapienza", 1992.
,[FN] Harmonic analysis and representation theory for groups acting on homogeneous trees, Cambridge Univ. Press, 1991.
and ,[Fu] Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, Vol. I (P. Ney, ed.), M. Dekker, New York, 1971, p. 1-63. | MR | Zbl
,[Ge] Harmonic functions on buildings of reductive split groups, Operator Algebras and Group Representations 1, Pitman, Boston, 1984, p. 208-221. | MR | Zbl
,[Gre] Stochastic groups, Ark. Mat., 4 (1961), 189-207. | MR | Zbl
,[G1] A central limit theorem for the group of linear transformations of the real axis, Soviet Math. Doklady, 15 (1974), 1512-1515. | Zbl
,[G2] Limit theorems for products of random linear transformations of a straight line (in Russian), Lithuanian Math. J., 15 (1975), 61-77. | MR | Zbl
,[Gro] Hyperbolic groups, Essays in Group Theory (S.M. Gersten, ed.), Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75-263. | MR | Zbl
,[Gui] Simplicité du spectre de Liapounoff d'un produit de matrices aléatoires sur un corps ultramétrique, C. R. Acad. Sc. Paris, 309 (1989), 885-888. | MR | Zbl
,[Gu] Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque, 74 (1980), 47-98. | Numdam | MR | Zbl
,[GKR] Marches Aléatoires sur les Groupes de Lie, Lecture Notes in Math., 624, Springer Berlin-Heidelberg-New York, 1977. | MR | Zbl
, and ,[dH] Free groups in linear groups, L'Enseignement Math., 29 (1983), 129-144. | MR | Zbl
,[K1] An entropy criterion for maximality of the boundary of random walks on discrete groups, Soviet Math. Doklady, 31 (1985), 193-197. | MR | Zbl
,[K2] Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semi-simple Lie groups, J. Soviet Math., 47 (1989), 2387-2398. | MR | Zbl
,[K3] Poisson boundaries of random walks on discrete solvable groups, Probability Measures on Groups X (H. Heyer, ed.), Plenum Press, New York, 1991, p. 205-238. | MR | Zbl
,[K4] Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, Harmonic Analysis and Discrete Potential Theory (M.A. Picardello, ed.), Plenum Press, New York, 1992, p. 145-180.
,[K5] Boundaries of random walks revisited, in preparation, Univ. Edinburgh.
,[Ki] The ergodic theory of subadditive processes, J. Royal Stat. Soc., Ser. B, 30 (1968), 499-510. | MR | Zbl
,[Ma] Discrete Subgroups of Semisimple Lie Groups (Erg. Math. Grenzgeb., 3. Folge, Band 17), Springer, New York, 1989.
,[Mo] Martin boundaries for invariant Markov processes on a solvable group, Theory of Probability and Appl., 12 (1967), 310-314. | Zbl
,[Ne] On the amenability and the Kunze-Stein property for groups acting on a tree, Pacific J. Math., 135 (1988), 371-380. | MR | Zbl
,[Rag] A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math., 32 (1979), 356-362. | MR | Zbl
,[Rau] Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Mém. Bull. Soc. Math. France, 54 (1977), 5-118. | Numdam
,[Sch] Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen, Inventiones Math., 55 (1979), 97-106. | MR | Zbl
,[S1] Local Fields, Springer, New York, 1979.
,[S2] Trees, Springer, New York, 1980.
,[Sp] Principles of Random Walk, (2nd ed.), Springer, New York, 1976. | MR | Zbl
,[SW] Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Zeitschr., 205 (1990), 471-486. | MR | Zbl
and ,[Ti] Sur le groupe des automorphismes d'un arbre, Essays in Topology and Related Topics (mémoires dédiés a G. de Rham), Springer, Berlin, 1970, p. 188-211. | MR | Zbl
,[Tr] Automorphism groups of graphs as topological groups, Math. Notes, 38 (1985), 717-720. | MR | Zbl
,[W1] Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math., 68 (1989), 271-301. | MR | Zbl
,[W2] Random walks on infinite graphs and groups: a survey on selected topics, Bull. London Math. Soc., 26 (1994), 1-60. | MR | Zbl
,[W3] The Martin boundary of random walks on the automorphism group of a homogeneous tree, print Univ. Milano.
,Cité par Sources :