Le théorème de Goldberg-Sachs riemannien a pour conséquence le fait que toute surface complexe, hermitienne, d’Einstein satisfait la condition -Einstein disant que la forme de Kähler est forme propre de l’opérateur de courbure. Dans cet article nous obtenons la classification complète des surfaces hermitiennes localement homogènes qui satisfont la condition -Einstein précédente. Nous construisons aussi des exemples de métriques hermitiennes non homogènes qui sont -Einstein (mais non Einstein) sur , et sur le produit d’une courbe de genre supérieur à 0 et d’une courbe de genre supérieur à 1.
A consequence of the Riemannian Goldberg-Sachs theorem is the fact that the Kähler form of an Einstein Hermitian surface is an eigenform of the curvature operator. Referring to this property as -Einstein condition we obtain a complete classification of the compact locally homogeneous -Einstein Hermitian surfaces. We also provide large families of non-homogeneous -Einstein (but non-Einstein) Hermitian metrics on , , and on the product surface of two curves and whose genuses are greater than 1 and 0, respectively.
@article{AIF_1999__49_5_1673_0, author = {Apostolov, Vestislav and Mu\v{s}karov, Oleg}, title = {Weakly-Einstein hermitian surfaces}, journal = {Annales de l'Institut Fourier}, pages = {1673--1692}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {49}, number = {5}, year = {1999}, doi = {10.5802/aif.1734}, mrnumber = {2000h:53091}, zbl = {0937.53035}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1734/} }
TY - JOUR AU - Apostolov, Vestislav AU - Muškarov, Oleg TI - Weakly-Einstein hermitian surfaces JO - Annales de l'Institut Fourier PY - 1999 SP - 1673 EP - 1692 VL - 49 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.1734/ DO - 10.5802/aif.1734 LA - en ID - AIF_1999__49_5_1673_0 ER -
%0 Journal Article %A Apostolov, Vestislav %A Muškarov, Oleg %T Weakly-Einstein hermitian surfaces %J Annales de l'Institut Fourier %D 1999 %P 1673-1692 %V 49 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.1734/ %R 10.5802/aif.1734 %G en %F AIF_1999__49_5_1673_0
Apostolov, Vestislav; Muškarov, Oleg. Weakly-Einstein hermitian surfaces. Annales de l'Institut Fourier, Tome 49 (1999) no. 5, pp. 1673-1692. doi : 10.5802/aif.1734. http://archive.numdam.org/articles/10.5802/aif.1734/
[1] Self-dual hermitian surfaces, Trans. Amer. Math. Soc., 349 (1986), 3051-3063. | Zbl
, and ,[2] The Riemannian Goldberg-Sachs theorem, Int. J. Math., 8 (1997) 421-439. | MR | Zbl
and ,[3] Equations du type Monge-Ampère sur les variétés kählériennes compactes. C.R.A.S. Paris, 283A (1976) 119. | MR | Zbl
,[4] Nonlinear analysis on manifolds. Monge-Ampère Equations, Grund. Math. Wiss. 252, Springer, Berlin-Heildelberg-New York, 1982. | MR | Zbl
,[5] Compact complex surfaces, Springer-Verlagh, Berlin-Heidelberg-New York-Tokyo, 1984. | MR | Zbl
, and ,[6] On the metric structure of non-Kähler complex surfaces, Preprint of Ecole Polytechnique (1998). | Zbl
,[7] Géométrie rieamannienne en dimension 4, Séminaire A.Besse, 1978-1979, eds. Bérard-Bergery, Berger, Houzel, CEDIC/Fernand Nathan, 1981.
,[8] Einstein Manifolds, Ergeb. Math. Grenzgeb., Vol. 10, Springer, Berlin-Heildelberg-New-York, 1987. | MR | Zbl
,[9] Conformal duality and compact complex surfaces, Math. Ann., 274 (1986), 517-526. | MR | Zbl
,[10] Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math., 49 (1983), 405-433. | Numdam | MR | Zbl
,[11] Fibrés hermitiens à endomorphisme de Ricci non négatif, Bull. Soc. Math. France, 105 (1977), 113-140. | Numdam | MR | Zbl
,[12] La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. | MR | Zbl
,[13] Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 ȕ S3, J. reine angew. Math., 469 (1995), 1-50. | MR | Zbl
,[14] Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier, 48-4 (1998), 1107-1127. | Numdam | MR | Zbl
and ,[15] Hermitian *-Einstein surfaces, Proc. Amer. Math. Soc. 120 (1994), 233-239. | MR | Zbl
and ,[16] Homogeneous Einstein spaces of dimension 4, J. Differential Geom., 3 (1969), 309-349. | MR | Zbl
,[17] Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 203-219. | MR | Zbl
and ,[18] Foundations of Differential Geometry I, II, Interscience Publishers, 1963. | Zbl
and ,[19] Einstein Metrics on Complex Surfaces, in Geometry and Physics (Aarhus 1995), Eds. J. Andersen, J. Dupont, H. Pedersen and A. Swann, Lect. Notes in Pure Appl. Math., Marcel Dekker, 1996.
,[20] Einstein equations and Cauchy-Riemann geometry, Ph. D. Thesis, SISSA/ISAS, Trieste (1993).
,[21] A compact rotating Gravitational Instanton, Phys. Lett., 79 B (1979), 235-238.
,[22] Induced Hopf bundles and Einstein metrics, in New developments in differential geometry, Budapest 1996, 295-305, Kluwer Acad. Publ., Dordrecht, 1999. | Zbl
and ,[23] Uniformization of conformally flat Hermitian surfaces, Diff. Geom. and its Appl., 2 (1992), 295-305. | MR | Zbl
,[24] Locally Kähler Gravitational Instantons, Acta Phys. Pol., B14 (1983), 637-661.
and ,[25] Every K3 surface is Kähler, Invent. Math., 73 (1983), 139-150. | MR | Zbl
,[26] On Calabi's Conjecture for Complex Surfaces with positive First Chern Class, Invent. Math., 10, (1990), 101-172. | MR | Zbl
,[27] Cohomogeneity-One Metrics with Self-dual Weyl Tensor, Twistor Theory (S. Huggett, ed.), Marcel Dekker Inc., New York, 1995, pp. 171-184. | MR | Zbl
,[28] Applications of the Kähler-Einstein Calabi-Yau metrics to moduli of K3 surfaces, Invent. Math., 61 (1980), 251-265. | MR | Zbl
,[29] Curvature tensors on almost-Hermitian manifolds, Trans. Amer. Math. Soc., 267 (1981), 365-398. | MR | Zbl
and ,[30] On locally and globally conformal Kähler manifolds, Trans. Amer. Math. Soc., 262 (1980), 533-542. | MR | Zbl
,[31] Generalized Hopf manifolds, Geom. Dedicata, 13 (1982), 231-255. | MR | Zbl
,[32] Some curvature properties of complex surfaces, Ann. Mat. Pura Appl., 32 (1982), 1-18. | MR | Zbl
,[33] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math., 31 (1978) 339-411. | MR | Zbl
,Cité par Sources :