On considère une solution forte et globale des équations de Navier-Stokes. On montre qu'elle se comporte comme une solution petite en temps grand. En combinant ce résultat asymptotique avec des propriétés de moyenne en temps, on obtient la stabilité d'une telle solution globale.
We consider an a priori global strong solution to the Navier-Stokes equations. We prove it behaves like a small solution for large time. Combining this asymptotics with uniqueness and averaging in time properties, we obtain the stability of such a global solution.
Classification : 35B35, 35B40, 76D05
Mots clés : équations de Navier-Stokes, comportement asymptotique en grand temps, stabilité
@article{AIF_2003__53_5_1387_0, author = {Gallagher, Isabelle and Iftimie, Dragos and Planchon, Fabrice}, title = {Asymptotics and stability for global solutions to the Navier-Stokes equations}, journal = {Annales de l'Institut Fourier}, pages = {1387--1424}, publisher = {Association des Annales de l'institut Fourier}, volume = {53}, number = {5}, year = {2003}, doi = {10.5802/aif.1983}, zbl = {1038.35054}, mrnumber = {2032938}, language = {en}, url = {http://archive.numdam.org/item/AIF_2003__53_5_1387_0/} }
Gallagher, Isabelle; Iftimie, Dragos; Planchon, Fabrice. Asymptotics and stability for global solutions to the Navier-Stokes equations. Annales de l'Institut Fourier, Tome 53 (2003) no. 5, pp. 1387-1424. doi : 10.5802/aif.1983. http://archive.numdam.org/item/AIF_2003__53_5_1387_0/
[1] On the stability of global solutions to Navier-Stokes equations in the space (to appear in J. Math. Pures Appl.) | MR 2062638 | Zbl 02118448
[2] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4), Volume 14 (1981) no. 2, pp. 209-246 | Numdam | MR 631751 | Zbl 0495.35024
[3] Existence of weak solutions for the Navier-Stokes equations with initial data in , Trans. Amer. Math. Soc, Volume 318 (1990) no. 1, pp. 179-200 | Article | MR 968416 | Zbl 0707.35118
[4] On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations, Rev. Mat. Iberoamericana, Volume 16 (2000) no. 1, pp. 1-16 | Article | MR 1768531 | Zbl 0965.35121
[5] Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM Journal Math. Anal, Volume 23 (1992), pp. 20-28 | Article | MR 1145160 | Zbl 0762.35063
[6] Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math, Volume 77 (1999), pp. 27-50 | Article | MR 1753481 | Zbl 0938.35125
[7] Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations, Volume 121 (1995) no. 2, pp. 314-328 | Article | MR 1354312 | Zbl 0878.35089
[8] Unicité dans et d'autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana, Volume 16 (2000) no. 3, pp. 605-667 | Article | MR 1813331 | Zbl 0970.35101
[9] Non-explosion en temps grand et stabilité de solutions globales des équations de Navier-Stokes, C. R. Acad. Sci. Paris, Sér. I Math, Volume 334 (2002), pp. 289-292 | MR 1891005 | Zbl 0997.35051
[10] On infinite energy solutions to the Navier-Stokes equations: global 2D existence and 3D weak-strong uniqueness (2001) (to appear in Arch. Rat. Mech. An) | Zbl 1027.35090
[11] On the nonstationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova, Volume 32 (1962), pp. 243-260 | Numdam | MR 142928 | Zbl 0114.05002
[12] Stability estimate of strong solutions for the Navier-Stokes system and its applications, Electron. J. Differential Equations (electronic), Volume 15 (1998), pp. 1-23 | MR 1629224 | Zbl 0912.35120
[13] Well-posedness for the Navier-Stokes equations, Adv. Math, Volume 157 (2001) no. 1, pp. 22-35 | Article | MR 1808843 | Zbl 0972.35084
[14] Recent progress in the Navier-Stokes problem (2002) (à paraître, CRC Press)
[15] Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Mathematica, Volume 63 (1934), pp. 193-248 | Article | JFM 60.0726.05
[16] Asymptotic behavior of global solutions to the Navier-Stokes equations in , Rev. Mat. Iberoamericana, Volume 14 (1998) no. 1, pp. 71-93 | Article | MR 1639283 | Zbl 0910.35096
[17] Sur un inégalité de type Poincaré, C. R. Acad. Sci. Paris, Sér. I Math, Volume 330 (2000) no. 1, pp. 21-23 | Article | MR 1741162 | Zbl 0953.46020
[18] Du local au global: interpolation entre données peu régulières et lois de conservation, Séminaire: Équations aux Dérivées Partielles, Volume Exp. No. IX, 18 (2002), p. 2001-2002
[19] Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys, Volume 159 (1994) no. 2, pp. 329-341 | Article | MR 1256992 | Zbl 0795.35082
[20] personnal communication.
[21] Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Annales Scientifiques de l'École Normale Supérieure, Volume 32 (1999), pp. 769-812 | Numdam | MR 1717576 | Zbl 0938.35128
[22] The equations of Navier-Stokes and abstract parabolic equations, Friedr. Vieweg \& Sohn, Braunschweig, 1985 | MR 832442