Brolin's theorem for curves in two complex dimensions
[Théorème de Brolin pour les courbes en dimension deux]
Annales de l'Institut Fourier, Tome 53 (2003) no. 5, pp. 1461-1501.

Pour toute application f: 2 2 de degré d2 nous donnons des conditions suffisantes sur un courant positif fermé S de bidegré (1,1), pour que la suite d -n f n* S converge vers le courant de Green lorsque n. Nous conjecturons aussi des conditions nécessaires pour ce problème de convergence.

Given a holomorphic mapping f: 2 2 of degree d2 we give sufficient conditions on a positive closed (1,1) current of S of unit mass under which d -n f n* S converges to the Green current as n. We also conjecture necessary condition for the same convergence.

DOI : 10.5802/aif.1985
Classification : 37F10, 32U25
Keywords: holomorphic dynamics, currents, Lelong numbers, equidistribution, Kilseman numbers, volume estimates, asymptotic multiplicities
Mot clés : dynamique holomorphe, courants, nombre de Lelong, équidistribution, nombre de Kiselman, estimations de volume, multiplicités asymptotiques
Favre, Charles 1 ; Jonsson, Mattias 2

1 Université Paris VII, UFR de Mathématiques, Équipe Géométrie et Dynamique, 75251 Paris Cedex 05 (France)
2 University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1109 (USA)
@article{AIF_2003__53_5_1461_0,
     author = {Favre, Charles and Jonsson, Mattias},
     title = {Brolin's theorem for curves in two complex dimensions},
     journal = {Annales de l'Institut Fourier},
     pages = {1461--1501},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {5},
     year = {2003},
     doi = {10.5802/aif.1985},
     mrnumber = {2032940},
     zbl = {02014683},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1985/}
}
TY  - JOUR
AU  - Favre, Charles
AU  - Jonsson, Mattias
TI  - Brolin's theorem for curves in two complex dimensions
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 1461
EP  - 1501
VL  - 53
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://archive.numdam.org/articles/10.5802/aif.1985/
DO  - 10.5802/aif.1985
LA  - en
ID  - AIF_2003__53_5_1461_0
ER  - 
%0 Journal Article
%A Favre, Charles
%A Jonsson, Mattias
%T Brolin's theorem for curves in two complex dimensions
%J Annales de l'Institut Fourier
%D 2003
%P 1461-1501
%V 53
%N 5
%I Association des Annales de l’institut Fourier
%U http://archive.numdam.org/articles/10.5802/aif.1985/
%R 10.5802/aif.1985
%G en
%F AIF_2003__53_5_1461_0
Favre, Charles; Jonsson, Mattias. Brolin's theorem for curves in two complex dimensions. Annales de l'Institut Fourier, Tome 53 (2003) no. 5, pp. 1461-1501. doi : 10.5802/aif.1985. http://archive.numdam.org/articles/10.5802/aif.1985/

[B] H. Brolin Invariant sets under iteration of rational functions, Ark. Mat, Volume 6 (1965), pp. 103-144 | DOI | MR | Zbl

[BD] J.-Y. Briend; J. Duval Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C) (to appear in Publ. Math. IHES.) | Numdam | Zbl

[BS] E. Bedford; J. Smillie Fatou-Bieberbach domains arising from polynomial diffeomorphisms, Indiana Math. J, Volume 40 (1991), pp. 789-792 | DOI | MR | Zbl

[CL] D. Cerveau; A. Lins; Neto . ph{{Hypersurfaces exceptionnelles des endomorphismes de P n , Bol. Soc. Brasil. Mat. (N.S.), Volume 31 (2000), pp. 155-161 | DOI | MR | Zbl

[D] M. Dabija Algebraic and geometric dynamics in several complex variables (2000) (PhD thesis, University of Michigan)

[D1] J.-P. Demailly; V. Ancona and A. Silva, editors Monge-Ampère operators, Lelong numbers and intersection theory., Complex analysis and geometry (Univ. Ser. Math) (1993), pp. 115-193 | Zbl

[D2] J.-P. Demailly Pseudoconvex-concave duality and regularization of currents., Several complex variables (Berkeley, CA, 1995-1996) (1999), pp. 233-271 | Zbl

[DJ] M. Dabija; M. Jonsson Holomorphic mappings of P 2 preserving a family of curves (preprint.)

[F1] C. Favre Note on pull-back and Lelong number of currents, Bull. Soc. Math. France, Volume 127 (1999), pp. 445-458 | Numdam | MR | Zbl

[F2] C. Favre Dynamique des applications rationnelles (2000) (PhD thesis, Université de Paris Sud, Orsay)

[F3] C. Favre Multiplicity of holomorphic functions, Math. Ann, Volume 316 (2000), pp. 355-378 | DOI | MR | Zbl

[FG] C. Favre; V. Guedj Dynamique des applications rationnelles des espaces multiprojectifs, Indiana Math. J., Volume 50 (2001), pp. 881-934 | MR | Zbl

[FLM] A. Freire; A. Lopez; R. Mañé An invariant measure for rational maps, Bol. Soc. Bras. Mat., Volume 14 (1983), pp. 45-62 | DOI | MR | Zbl

[FS1] J. E. FornÆss; N. Sibony Complex Hénon mappings in C 2 and Fatou-Bieberbach domains, Duke Math. J., Volume 65 (1992), pp. 345-380 | DOI | MR | Zbl

[FS2] J. E. Forn\AEss; N. Sibony; P. M. Gauthier and G. Sabidussi, editors Complex dynamics in higher dimension., Complex Potential Theory (1994), pp. 131-186

[FS3] J. E. Forn\AEss; N. Sibony Complex dynamics in higher dimension I, Astérisque, Volume 222 (1994), pp. 201-231 | MR | Zbl

[FS4] J. E. Forn\AEss; N. Sibony; T. Bloom et al., editors Complex dynamics in higher dimension II., Modern Methods in Complex Analysis (Annals of Mathematics Studies), Volume 137 (1995), pp. 135-182 | Zbl

[H] L. Hörmander Introduction to complex analysis in several variables, North Holland, 1990 | MR | Zbl

[K1] C. O. Kiselman Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math, Volume 60 (1994), pp. 173-197 | MR | Zbl

[K2] C. O. Kiselman Ensembles de sous-niveau et images inverses des fonctions plurisousharmoniques, Bull. Sci. Math., Volume 124 (2000), pp. 75-92 | DOI | MR | Zbl

[Kl] M. Klimek Pluripotential theory, London Mathematical Society Monographs, New Series, Oxford Science Publications, 1991 | MR | Zbl

[L] M. Lyubich Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems, Volume 3 (1983), pp. 351-385 | MR | Zbl

[Lo] S. \Lojasiewicz Introduction to complex analytic geometry, Birkhäuser Verlag, Basel, 1991 | MR | Zbl

[M] S.K. Mimouni Singularités des fonctions plurisousharmoniques et courants de Liouville (2001) (Thèse de la faculté des sciences de Monastir, Tunisie)

[RS] A. Russakovskii; B. Shiffman Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J, Volume 46 (1997), pp. 897-932 | DOI | MR | Zbl

[S] H. Skoda Sous-ensembles analytiques d'ordre fini ou infini dans n , Bull. Soc. Math. France, Volume 100 (1972), pp. 353-408 | Numdam | MR | Zbl

[SSU] B. Shiffman; M. Shishikura; T. Ueda Totally invariant curves on 2 (preprint)

Cité par Sources :