Soient deux anneaux locaux réguliers, essentiellement de type fini sur un corps de caractéristique zéro. Si est un anneau de valuation du corps des fractions de dominant , nous montrons qu’il existe des suites de transformés monoidaux (éclatements d’idéaux premiers réguliers) et le long de tels que est une application monomiale. Il s’ensuit qu’un morphisme de variétés non singulières peut-être rendu monomial le long d’une valuation après éclatement de sous-variétés non singulières.
Suppose that are regular local rings which are essentially of finite type over a field of characteristic zero. If is a valuation ring of the quotient field of which dominates , then we show that there are sequences of monoidal transforms (blow ups of regular primes) and along such that is a monomial mapping. It follows that a morphism of nonsingular varieties can be made to be a monomial mapping along a valuation, after blow ups of nonsingular subvarieties.
Keywords: Monomialization, monoidal transform, valuation ring, Morphism
Mot clés : monomialisation, transformés monoidaux, anneaux de valuation, morphisme
@article{AIF_2005__55_5_1517_0, author = {Cutkosky, Steven Dale}, title = {Local monomialization of transcendental extensions}, journal = {Annales de l'Institut Fourier}, pages = {1517--1586}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {5}, year = {2005}, doi = {10.5802/aif.2132}, mrnumber = {2172273}, zbl = {1081.14020}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2132/} }
TY - JOUR AU - Cutkosky, Steven Dale TI - Local monomialization of transcendental extensions JO - Annales de l'Institut Fourier PY - 2005 SP - 1517 EP - 1586 VL - 55 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2132/ DO - 10.5802/aif.2132 LA - en ID - AIF_2005__55_5_1517_0 ER -
%0 Journal Article %A Cutkosky, Steven Dale %T Local monomialization of transcendental extensions %J Annales de l'Institut Fourier %D 2005 %P 1517-1586 %V 55 %N 5 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2132/ %R 10.5802/aif.2132 %G en %F AIF_2005__55_5_1517_0
Cutkosky, Steven Dale. Local monomialization of transcendental extensions. Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1517-1586. doi : 10.5802/aif.2132. http://archive.numdam.org/articles/10.5802/aif.2132/
[1] Local uniformization on algebraic surfaces over ground fields of characteristic , Annals of Math., Volume 63 (1956), pp. 491-526 | DOI | MR | Zbl
[2] On the valuations centered in a local domain, Amer. J. Math., Volume 78 (1956), pp. 321-348 | DOI | MR | Zbl
[3] Simultaneous resolution for algebraic surfaces, Amer. J. Math., Volume 78 (1956), pp. 761-790 | DOI | MR | Zbl
[4] Ramification theoretic methods in algebraic geometry, Princeton University Press (1959) | MR | Zbl
[5] Resolution of singularities of embedded algebraic surfaces, second edition, Springer, 1998 | MR | Zbl
[6] Resolution of singularities and modular Galois theory, Bulletin of the AMS, Volume 38 (2001), pp. 131-171 | MR | Zbl
[7] On the ramification of algebraic functions, American J. Math., Volume 77 (1955), pp. 575-592 | DOI | MR | Zbl
[8] Algebraic Geometry for Scientists and Engineers, American Mathematical Society (1990) | MR | Zbl
[9] Torification and factorization of birational maps, Journal of the American Mathematical Society, Volume 15 (2002), pp. 351-572 | MR | Zbl
[10] Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math., Volume 128 (1997), pp. 207-302 | DOI | MR | Zbl
[11] Strong domination, weak factorization or three dimensional regular local local rings, Journal of the Indian Math. Soc., Volume 45 (1981), pp. 21-47 | MR | Zbl
[12] Polyèdre caractéristique d'une singularité (1987) (Thèse, Université de Paris-Sud, Centre d'Orsay)
[13] Local Factorization of Birational Maps, Advances in Math., Volume 132 (1997), pp. 167-315 | DOI | MR | Zbl
[14] Local Monomialization and Factorization of Morphisms, Astérisque, Volume 260 (1999) | Numdam | MR | Zbl
[15] Simultaneous resolution of singularities, Proc. American Math. Soc., Volume 128 (2000), pp. 1905-1910 | DOI | MR | Zbl
[16] Ramification of valuations and singularities (to appear in Contemporary Math.) | MR | Zbl
[17] Monomialization of morphisms from 3-folds to surfaces, LNM 1786, Springer-Verlag, 2002 | MR | Zbl
[18] Poincaré series of resolutions of surface singularities, Transactions AMS, Volume 356 (2003), pp. 1833-1874 | MR | Zbl
[19] Monomialization of strongly prepared morphisms from nonsingular -folds to surfaces, J. Algebra, Volume 275 (2004), pp. 275-320 | DOI | MR | Zbl
[20] Monomial resolutions of morphisms of algebraic surfaces, Communications in Algebra, Volume 28 (2000), pp. 5935-5959 | DOI | MR | Zbl
[21] Ramification of valuations, Advances in Mathematics, Volume 183 (2004), pp. 1-79 | DOI | MR | Zbl
[22] Completions of valuation rings (to appear in Contemporary Mathematics)
[23] Factorizations of matrices and birational maps (preprint)
[24] Introduction to Toric Varieties, Princeton University Press (1993) | MR | Zbl
[25] Approximating discrete valuation rings by regular local rings, a remark on local uniformization, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 37-43 | DOI | MR | Zbl
[26] Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math., Volume 79 (1964), pp. 109-326 | DOI | MR | Zbl
[27] Desingularization of excellent surfaces, Advanced Science Seminar in Algebraic Geometry, Bowdoin College, Brunswick, Maine, 1967
[28] Local strong factorization of birational maps, J. Alg. Geom., Volume 14 (2005), pp. 165-175 | DOI | MR | Zbl
[29] Valuation theoretic and model theoretic aspects of local uniformization, in Resolution of Singularities, Springer-Verlag, 2000 | MR | Zbl
[30] Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978), pp. 151-207 | DOI | MR | Zbl
[31] Commutative Ring Theory, Cambridge studies in advanced mathematics, 8, Cambridge University Press, Cambridge, 1986 | MR | Zbl
[32] Quasi-Canonical uniformization of hypersurface singularities of characteristic zero, Comm. Algebra, Volume 20 (1992), pp. 3207-3249 | DOI | MR | Zbl
[33] Valuations in function fields of surfaces, Amer. J. Math., Volume 112 (1990), pp. 107-156 | DOI | MR | Zbl
[34] Valuations, Deformations and Toric Geometry, Valuation Theory and its Applications II (Fields Institute Communications), Volume 33 (1990), pp. 441-491 | Zbl
[35] A course on constructive desingularization and equivariance, in Resolution of Singularities, Springer-Verlag, 2000 | Zbl
[36] The reduction of the singularities of an algebraic surface, Annals of Math., Volume 40 (1939), pp. 639-689 | DOI | JFM | MR | Zbl
[37] Local uniformization of algebraic varieties, Annals of Math., Volume 41 (1940), pp. 852-896 | DOI | MR | Zbl
[38] Reduction of the singularities of algebraic three dimensional varieties, Annals of Math., Volume 45 (1944), pp. 472-542 | DOI | MR | Zbl
[39] Commutative Algebra II, Van Nostrand, Princeton, 1960 | MR | Zbl
Cité par Sources :