Déformations équivariantes des courbes semistables  [ Equivariant deformations of semi-stable curves ]
Annales de l'Institut Fourier, Volume 55 (2005) no. 6, p. 1905-1941
In this paper we study deformation theory of wildly ramified Galois coverings between stables curves. We first study the local aspects concerning a formal double point with a p-group as inertia group, and then the global case. We compare global obstructions and local obstructions to the lifting problem.
Nous étudions la théorie des déformations des revêtements galoisiens sauvagement ramifiés entre courbes stables. On examine d’abord les problèmes locaux, point double formel avec pour groupe d’inertie un p-groupe, puis le cas global. On compare enfin les obstructions globales au relèvement aux obstructions locales.
DOI : https://doi.org/10.5802/aif.2146
Classification:  14H10,  14H30,  14B10
Keywords: covering, deformation, double point
@article{AIF_2005__55_6_1905_0,
     author = {Bertin, Jos\'e and Maugeais, Sylvain},
     title = {D\'eformations \'equivariantes des courbes semistables},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {6},
     year = {2005},
     pages = {1905-1941},
     doi = {10.5802/aif.2146},
     zbl = {1095.14022},
     mrnumber = {2187940},
     language = {fr},
     url = {http://www.numdam.org/item/AIF_2005__55_6_1905_0}
}
Bertin, José; Maugeais, Sylvain. Déformations équivariantes des courbes semistables. Annales de l'Institut Fourier, Volume 55 (2005) no. 6, pp. 1905-1941. doi : 10.5802/aif.2146. http://www.numdam.org/item/AIF_2005__55_6_1905_0/

[Ab] D. Abramovich Raynaud's group-scheme and reduction of coverings (preprint, arXiv math.AG/0304352, http://arxiv.org/abs/math.AG/0304352)

[BM] J. Bertin; A. Mézard Déformations formelles des revêtements sauvagement ramifiés, Inv. Math., Tome 141 (2000) no. 1, pp. 195-238 | MR 1767273 | Zbl 0993.14014

[BM2] J. Bertin; A. Mézard Déformations formelles de revêtements : un principe local-global (to appear Israel math. journal) | Zbl 1133.14011

[BR] J. Bertin; M. Romagny Champs de Hurwitz (2005) (Prépublication Institut Fourier)

[CK] G. Cornelissen; F. Kato Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math J., Tome 116 (2003) no. 3, pp. 431-470 | Article | MR 1958094 | Zbl 01941437

[DM] P. Deligne; D. Mumford The irreducibilty of the space of curves of a given genus, Inst. Hautes Études Sci. Publ. Math., Tome 36 (1969), pp. 75-109 | Article | Numdam | MR 262240 | Zbl 0181.48803

[Ek] T. Ekedahl Boundary behaviour of Hurwitz schemes in The moduli space of curves (Texel Island, 1994), Progr. Math., Tome 129 (1995), pp. 173-198 | MR 1363057 | Zbl 0862.14018

[Gr] A. Grothendieck Sur quelques points d'algèbre homologique, Tôhoku Math. J., Tome 9 (1957) no. 2, pp. 119-221 | Article | MR 102537 | Zbl 0118.26104

[HM] J. Harris; D. Mumford On the Kodaira dimension of the moduli space of curves, Invent. Math., Tome 67 (1982), pp. 23-86 | Article | MR 664324 | Zbl 0506.14016

[Ja] T.J. Jarvis Torsion free sheaves and the moduli space of higher spin curves, Compositio. Math., Tome 110 (1998) no. 3, pp. 291-333 | Article | MR 1602060 | Zbl 0912.14010

[Ma] S. Maugeais Relèvement des revêtements p-cycliques des courbes rationnelles semi-stables, Math. Ann., Tome 327 (2003), pp. 365-393 | Article | MR 2015076 | Zbl 02018276

[Ma2] S. Maugeais Déformations équivariantes des courbes stables (2003) (Thèse de l'Université de Bordeaux)

[OP] A. Okounkov; R. Pandharipande Gromov-Witten theory, Hurwitz numbers, and Matrix models I (preprint arXiv:math.AG/0101147, http://arxiv.org/abs/math.AG/0101147)

[Pr] R. Pries Deformation of Wildly ramified Actions on Curves (preprint arXiv: math.AG/0403056, http://arxiv.org/abs/math.AG/0403056)

[Se] J.P. Serre Corps locaux, Hermann | Zbl 0137.02601

[Wa] J. Wahl Equisingular deformation of plane algebroid curves, Trans. Amer. Math. Soc., Tome 193 (1974), pp. 143-170 | Article | MR 419439 | Zbl 0294.14007

[We] S. Wewers Formal deformation of curves with group scheme action (2003) (preprint arXiv:math.AG/0212145, http://arxiv.org/abs/math.AG/0212145)

[We2] S. Wewers Deformation of tame admissible covers of curves, London Math. Soc. (Lecture notes Ser.) Tome 256 (1999) | Zbl 0995.14008