Une décomposition de Fatou-Julia d’un feuilletage transversalement holomorphe de codimension complexe un a été obtenue par Ghys, Gomez-Mont et Saludes. Dans cet article, nous proposons une autre décomposition en utilisant des familles normales. Ces deux décompositions ont des propriétés communes, ainsi que certaines différences. Il est montré que l’ensemble de Fatou pour notre décomposition contient toujours celui pour la décomposition de Ghys, Gomez-Mont et Saludes, et aussi que l’inclusion est stricte pour certains exemples. Cette propriété est importante pour une version du théorème de Duminy en relation avec les classes caractéristiques secondaires. Quelques similitudes et différences entre les ensembles de Julia de feuilletages et ceux d’itérations d’applications sont présentées. Une application aux études de la métrique transversale de Kobayashi est aussi donnée.
A Fatou-Julia decomposition of transversally holomorphic foliations of complex codimension one was given by Ghys, Gomez-Mont and Saludes. In this paper, we propose another decomposition in terms of normal families. Two decompositions have common properties as well as certain differences. It will be shown that the Fatou sets in our sense always contain the Fatou sets in the sense of Ghys, Gomez-Mont and Saludes and the inclusion is strict in some examples. This property is important when discussing a version of Duminy’s theorem in relation to secondary characteristic classes. The structure of Fatou sets is studied in detail, and some properties of Julia sets are discussed. Some similarities and differences between the Julia sets of foliations and those of mapping iterations will be shown. An application to the study of the transversal Kobayashi metrics is also given.
Keywords: Holomorphic foliations, Fatou set, Julia set, Riemannian foliations
Mot clés : feuilletages holomorphes, ensemble de Fatou, ensemble de Julia, feuilletages riemanniens
@article{AIF_2010__60_3_1057_0, author = {Asuke, Taro}, title = {A {Fatou-Julia} decomposition of transversally holomorphic foliations}, journal = {Annales de l'Institut Fourier}, pages = {1057--1104}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {3}, year = {2010}, doi = {10.5802/aif.2547}, zbl = {1198.57020}, mrnumber = {2680824}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.2547/} }
TY - JOUR AU - Asuke, Taro TI - A Fatou-Julia decomposition of transversally holomorphic foliations JO - Annales de l'Institut Fourier PY - 2010 SP - 1057 EP - 1104 VL - 60 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://archive.numdam.org/articles/10.5802/aif.2547/ DO - 10.5802/aif.2547 LA - en ID - AIF_2010__60_3_1057_0 ER -
%0 Journal Article %A Asuke, Taro %T A Fatou-Julia decomposition of transversally holomorphic foliations %J Annales de l'Institut Fourier %D 2010 %P 1057-1104 %V 60 %N 3 %I Association des Annales de l’institut Fourier %U http://archive.numdam.org/articles/10.5802/aif.2547/ %R 10.5802/aif.2547 %G en %F AIF_2010__60_3_1057_0
Asuke, Taro. A Fatou-Julia decomposition of transversally holomorphic foliations. Annales de l'Institut Fourier, Tome 60 (2010) no. 3, pp. 1057-1104. doi : 10.5802/aif.2547. http://archive.numdam.org/articles/10.5802/aif.2547/
[1] Conformal Invariants, McGraw-Hill Book Company, New York, 1973 (Topics in Geometric Function Theory) | MR | Zbl
[2] On the real secondary classes of transversely holomorphic foliations, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 995-1017 | DOI | EuDML | Numdam | MR | Zbl
[3] Localization and residue of the Bott class, Topology, Volume 43 (2004) no. 2, pp. 289-317 | DOI | MR | Zbl
[4] A remark on the integral cohomology of , Topology, Volume 11 (1972), pp. 141-146 | DOI | MR | Zbl
[5] Sur les hypersurfaces solutions des équations de Pfaff, C. R. Acad. Sci. Paris Sér. I Math., Volume 329 (1999) no. 9, pp. 793-795 | DOI | MR | Zbl
[6] Sur les groupes de transformations analytiques, Hermann, Paris, 1935 | Zbl
[7] Random conformal dynamical systems, Geom. Funct. Anal., Volume 17 (2007), pp. 1043-1105 | DOI | MR | Zbl
[8] Holomorphic foliations and the Kobayashi metric, Proc. Amer. Math. Soc., Volume 67 (1977), pp. 117-122 | DOI | MR | Zbl
[9] L’invariant de Godbillon-Vey d’un feuilletage se localise dans les feuilles ressort preprint (1982)
[10] Flots transversalement affines et tissus feuilletés, Mémoire de la Société Mathématiques de France (N.S.), Volume 46 (1991), pp. 123-150 | Numdam | MR | Zbl
[11] Fatou and Julia components of transversely holomorphic foliations, Essays on geometry and related topics, Vol. 1, 2 (Monogr. Enseign. Math.), Volume 38, Enseignement Math., Geneva, 2001, pp. 287-319 | MR | Zbl
[12] Groupoïdes d’holonomie et classifiants, Astérisque (1984) no. 116, pp. 70-97 Transversal structure of foliations (Toulouse, 1982) | Numdam | Zbl
[13] Pseudogroups of local isometries, Differential geometry (Santiago de Compostela, 1984) (Res. Notes in Math.), Volume 131, Pitman, Boston, MA, 1985, pp. 174-197 | MR | Zbl
[14] Leaf closures in Riemannian foliations, A fête of topology, Academic Press, Boston, MA, 1988, pp. 3-32 | MR | Zbl
[15] Foliations and compactly generated pseudogroups, Foliations: geometry and dynamics (Warsaw, 2000), World Sci. Publ., River Edge, NJ, 2002, pp. 275-295 | MR | Zbl
[16] Secondary classes, Weil measures and the geometry of foliations, J. Differential Geom., Volume 20 (1984), pp. 291-309 | MR | Zbl
[17] A stable analytic foliation with only exceptional minimal sets, Dynamical systems—Warwick 1974, Proceedings of a Symposium titled “Applications of Topology and Dynamical Systems" held at the University of Warwick, Coventry, 1973/1974. Presented to Professor E. C. Zeeman on his fiftieth birthday, 4th February 1975 (Lecture Notes in Mathematics), Volume 468, Springer-Verlag, Berlin-New York, 1975, pp. 9-10 | MR | Zbl
[18] The Godbillon measure of amenable foliations, J. Differential Geom., Volume 23 (1986) no. 3, pp. 347-365 | MR | Zbl
[19] Some remarks on the structure of locally compact local groups, Ann. of Math., Volume 66 (1957) no. 1, pp. 36-69 | DOI | MR | Zbl
[20]
(private communication)[21] Riemannian foliations, Progress in Mathematics, 73, Birkhäuser, Boston, 1988 (Translated by G. Cairns) | MR | Zbl
[22] Topological transformation groups, Robert E. Krieger Publishing Co., Huntington, N.Y., 1974 (Reprint of the 1955 original) | MR | Zbl
[23] Holomorphic dynamics, Cambridge Studies in Advanced Mathematics, 66, Cambridge University Press, Cambridge, 2000 (Translated from the 1995 Japanese original and revised by the authors) | MR | Zbl
[24] The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, 143, Cambridge University Press, Cambridge, 1989 | MR | Zbl
[25] Lectures on Choquet’s theorem. Second edition, Lecture Notes in Mathematics, 1757, Springer-Verlag, Berlin, 2001 | MR | Zbl
[26] Remarks on the Kobayashi metric, Several complex variables, II, Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970 (Lecture Notes in Math.), Volume 185, Springer-Verlag, Berlin, 1971, pp. 125-137 | MR | Zbl
[27] The extension of regular holomorphic maps, Proc. Amer. Math. Soc., Volume 43 (1974), pp. 306-310 | DOI | MR | Zbl
[28] Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d’isométries, Ann. Inst. Fourier, Grenoble, Volume 38 (1988) no. 2, pp. 185-200 | DOI | Numdam | MR | Zbl
[29] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., Volume 50 (1979), pp. 171-202 | DOI | Numdam | MR | Zbl
[30] Measures and dimensions in conformal dynamics, Bull. Amer. Math. Soc. (N.S.), Volume 40 (2003) no. 3, pp. 281-321 | DOI | MR | Zbl
[31] Dynamics of foliations, groups and pseudogroups, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series), 64, Birkhäuser Verlag, Basel, 2004 | MR | Zbl
Cité par Sources :