Localization of basic characteristic classes  [ Localisation de classes caractéristiques basiques ]
Annales de l'Institut Fourier, Tome 64 (2014) no. 2, pp. 537-570.

Nous introduisons des classes et des nombres caractéristiques basiques d’un feuilletage riemannien. Si la variété riemannienne est complète, simplement connexe (ou plus généralement si le feuilletage est un feuilletage de Killing transversalement orientable) et si l’espace des ahérences des feuilles est compact, alors les nombres caractéristiques basiques sont déterminés par la dynamique infinitésimale du feuilletage en l’union des adhérences des feuilles fermées. En effet, ils peuvent être calculés avec un théorème de localisation de type Atiyah-Bott-Berline-Vergne pour la cohomologie équivariante basique.

We introduce basic characteristic classes and numbers as new invariants for Riemannian foliations. If the ambient Riemannian manifold M is complete, simply connected (or more generally if the foliation is a transversely orientable Killing foliation) and if the space of leaf closures is compact, then the basic characteristic numbers are determined by the infinitesimal dynamical behavior of the foliation at the union of its closed leaves. In fact, they can be computed with an Atiyah-Bott-Berline-Vergne-type localization theorem for equivariant basic cohomology.

DOI : https://doi.org/10.5802/aif.2857
Classification : 57R30,  53C12,  57R20
Mots clés : feuilletages riemanniens, cohomologie basique, cohomologie équivariante, classes caractéristiques, localisation
@article{AIF_2014__64_2_537_0,
     author = {T\"oben, Dirk},
     title = {Localization of basic characteristic classes},
     journal = {Annales de l'Institut Fourier},
     pages = {537--570},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {64},
     number = {2},
     year = {2014},
     doi = {10.5802/aif.2857},
     mrnumber = {3330914},
     zbl = {06387284},
     language = {en},
     url = {archive.numdam.org/item/AIF_2014__64_2_537_0/}
}
Töben, Dirk. Localization of basic characteristic classes. Annales de l'Institut Fourier, Tome 64 (2014) no. 2, pp. 537-570. doi : 10.5802/aif.2857. http://archive.numdam.org/item/AIF_2014__64_2_537_0/

[1] Alekseev, A.; Meinrenken, E. Equivariant cohomology and the Maurer-Cartan equation, Duke Math. J., Volume 130 (2005) no. 3, pp. 479-521 | Article | MR 2184568 | Zbl 1085.57022

[2] Alexandrino, Marcos M.; Biliotti, Leonardo; Pedrosa, Renato H. L. Lectures on isometric actions, XV Escola de Geometria Diferencial. [XV School of Differential Geometry], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2008, pp. vi+224 | MR 2459324 | Zbl 1151.22001

[3] Atiyah, M. F.; Bott, R. The moment map and equivariant cohomology, Topology, Volume 23 (1984) no. 1, pp. 1-28 | Article | MR 721448 | Zbl 0521.58025

[4] Belfi, Victor; Park, Efton; Richardson, Ken A Hopf index theorem for foliations, Differential Geom. Appl., Volume 18 (2003) no. 3, pp. 319-341 | Article | MR 1975032 | Zbl 1041.53030

[5] Berline, Nicole; Vergne, Michèle Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J., Volume 50 (1983) no. 2, pp. 539-549 | Article | MR 705039 | Zbl 0515.58007

[6] Bott, Raoul Vector fields and characteristic numbers, Michigan Math. J., Volume 14 (1967), pp. 231-244 | Article | MR 211416 | Zbl 0145.43801

[7] Bott, Raoul; Tu, Loring W. Differential forms in algebraic topology, Graduate Texts in Mathematics, Volume 82, Springer-Verlag, New York-Berlin, 1982, pp. xiv+331 | MR 658304 | Zbl 0496.55001

[8] do Carmo, Manfredo Perdigão Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992, pp. xiv+300 (Translated from the second Portuguese edition by Francis Flaherty) | MR 1138207 | Zbl 0752.53001

[9] El Kacimi-Alaoui, A.; Nicolau, M. On the topological invariance of the basic cohomology, Math. Ann., Volume 295 (1993) no. 4, pp. 627-634 | Article | MR 1214951 | Zbl 0793.57016

[10] Goertsches, O.; Töben, D. Equivariant basic cohomolog of Riemannian foliations (submitted, arXiv:1004.1043v1)

[11] Greub, Werner; Halperin, Stephen; Vanstone, Ray Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Academic Press, New York-London, 1972, pp. xix+443 (Pure and Applied Mathematics, Vol. 47) | MR 336650 | Zbl 0322.58001

[12] Guillemin, Victor W.; Sternberg, Shlomo Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999, pp. xxiv+228 | MR 1689252 | Zbl 0934.55007

[13] Hurder, Steven; Töben, Dirk The equivariant LS-category of polar actions, Topology Appl., Volume 156 (2009) no. 3, pp. 500-514 | Article | MR 2492297 | Zbl 1186.55001

[14] Hurder, Steven; Töben, Dirk Transverse LS category for Riemannian foliations, Trans. Amer. Math. Soc., Volume 361 (2009) no. 11, pp. 5647-5680 | Article | MR 2529908 | Zbl 1200.57021

[15] Kamber, Franz W.; Tondeur, Philippe Foliated bundles and characteristic classes, Lecture Notes in Mathematics, Vol. 493, Springer-Verlag, Berlin-New York, 1975, pp. xiv+208 | MR 402773 | Zbl 0308.57011

[16] Lazarov, Connor; Pasternack, Joel Residues and characteristic classes for Riemannian foliations, J. Differential Geometry, Volume 11 (1976) no. 4, pp. 599-612 | MR 445514 | Zbl 0367.57005

[17] McCleary, John A user’s guide to spectral sequences, Cambridge Studies in Advanced Mathematics, Volume 58, Cambridge University Press, Cambridge, 2001, pp. xvi+561 | MR 1793722 | Zbl 0959.55001

[18] Molino, Pierre Riemannian foliations, Progress in Mathematics, Volume 73, Birkhäuser Boston, Inc., Boston, MA, 1988, pp. xii+339 (Translated from the French by Grant Cairns, With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu) | MR 932463 | Zbl 0633.53001

[19] Mozgawa, Witold Feuilletages de Killing, Collect. Math., Volume 36 (1985) no. 3, pp. 285-290 | MR 868544 | Zbl 0614.53030

[20] Reinhart, Bruce L. Harmonic integrals on foliated manifolds, Amer. J. Math., Volume 81 (1959), pp. 529-536 | Article | MR 107280 | Zbl 0088.07902

[21] Sakai, Takashi Riemannian geometry, Translations of Mathematical Monographs, Volume 149, American Mathematical Society, Providence, RI, 1996, pp. xiv+358 (Translated from the 1992 Japanese original by the author) | MR 1390760 | Zbl 0886.53002

[22] Sergiescu, Vlad Cohomologie basique et dualité des feuilletages riemanniens, Ann. Inst. Fourier (Grenoble), Volume 35 (1985) no. 3, pp. 137-158 | Article | Numdam | MR 810671 | Zbl 0563.57012