Nous introduisons un calcul pour la classe d’images directes de courants semi-méromorphes sur un espace analytique reduit , qui étend le calcul classique de Coleff, Herrera et Passare. Notre résultat principal montre que chaque élément de cette classe agit de manière analogue à une multiplication sur le faisceau de courants pseudoméromorphes sur . Nous prouvons également que ainsi que et certains sous-faisceaux sont fermés sous l’action des opérateurs différentiels holomorphes et la multiplication intérieure par des champs vectoriels holomorphes.
We introduce a calculus for the class of direct images of semi-meromorphic currents on a reduded analytic space , that extends the classical calculus due to Coleff, Herrera and Passare. Our main result is that each element in this class acts as a kind of multiplication on the sheaf of pseudomeromorphic currents on . We also prove that as well as and certain subsheaves are closed under the action of holomorphic differential operators and interior multiplication by holomorphic vector fields.
Révisé le : 2017-09-10
Accepté le : 2017-09-13
Publié le : 2018-04-17
Classification : 32A26, 32A27, 32B15, 32C30
Mots clés : courant résiduel, courant semi-méromorphe, espace analytique, courant pseudoméromorphe
@article{AIF_2018__68_2_875_0, author = {Andersson, Mats and Wulcan, Elizabeth}, title = {Direct images of semi-meromorphic currents}, journal = {Annales de l'Institut Fourier}, pages = {875--900}, publisher = {Association des Annales de l'institut Fourier}, volume = {68}, number = {2}, year = {2018}, doi = {10.5802/aif.3180}, language = {en}, url = {archive.numdam.org/item/AIF_2018__68_2_875_0/} }
Andersson, Mats; Wulcan, Elizabeth. Direct images of semi-meromorphic currents. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 875-900. doi : 10.5802/aif.3180. http://archive.numdam.org/item/AIF_2018__68_2_875_0/
[1] Multivariable residue calculus and integral formulas (http://www.math.chalmers.se/~matsa/3introresidy.pdf)
[2] Ideals of smooth functions and residue currents, J. Funct. Anal., Volume 212 (2004) no. 1, pp. 76-88 | Article | MR 2065238 | Zbl 1056.32006
[3] Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Volume 128 (2004) no. 6, pp. 481-512 | Article | MR 2074610 | Zbl 1086.32005
[4] Uniqueness and factorization of Coleff-Herrera currents, Ann. Fac. Sci. Toulouse, Math., Volume 18 (2009) no. 4, pp. 651-661 http://afst.cedram.org/item?id=AFST_2009_6_18_4_651_0 | Article | MR 2590383 | Zbl 1187.32026
[5] A residue criterion for strong holomorphicity, Ark. Mat., Volume 48 (2010) no. 1, pp. 1-15 | Article | MR 2594583 | Zbl 1198.32001
[6] Pseudomeromorphic currents on subvarieties, Complex Var. Elliptic Equ., Volume 61 (2016) no. 11, pp. 1533-1540 | Article | MR 3513365 | Zbl 1345.32004
[7] A Dolbeault-Grothendieck lemma on complex spaces via Koppelman formulas, Invent. Math., Volume 190 (2012) no. 2, pp. 261-297 | Article | MR 2981816 | Zbl 1271.32009
[8] On the Briançon-Skoda theorem on a singular variety, Ann. Inst. Fourier, Volume 60 (2010) no. 2, pp. 417-432 http://aif.cedram.org/item?id=AIF_2010__60_2_417_0 | Article | MR 2667781 | Zbl 1200.32007
[9] Residue currents with prescribed annihilator ideals, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 6, pp. 985-1007 | Article | MR 2419855 | Zbl 1143.32003
[10] Decomposition of residue currents, J. Reine Angew. Math., Volume 638 (2010), pp. 103-118 | Article | MR 2595337 | Zbl 1190.32006
[11] Global effective versions of the Briançon-Skoda-Huneke theorem, Invent. Math., Volume 200 (2015) no. 2, pp. 607-651 | Article | MR 3338011 | Zbl 1333.32006
[12] Residues and -modules, The legacy of Niels Henrik Abel, Springer, 2004, pp. 605-651 | MR 2077588 | Zbl 1069.32001
[13] Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, Volume 633, Springer, 1978, x+211 pages | MR 492769 | Zbl 0371.32007
[14] Residues and principal values on complex spaces, Math. Ann., Volume 194 (1971), pp. 259-294 | Article | MR 0296352 | Zbl 0224.32012
[15] Residue currents associated with weakly holomorphic functions, Ark. Mat., Volume 50 (2012) no. 1, pp. 135-164 | Article | MR 2890348 | Zbl 1269.32001
[16] On the duality theorem on an analytic variety, Math. Ann., Volume 355 (2013) no. 1, pp. 215-234 | Article | MR 3004581 | Zbl 1269.32002
[17] Various approaches to products of residue currents, J. Funct. Anal., Volume 264 (2013) no. 1, pp. 118-138 | Article | MR 2995702 | Zbl 1271.32010
[18] An effective uniform Artin-Rees lemma, Analysis Meets Geometry (Trends in Mathematics), Birkhäuser/Springer, 2017, pp. 335-348
[19] Sur les fonctions différentiables et les ensembles analytiques, Bull. Soc. Math. Fr., Volume 91 (1963), pp. 113-127 | Article | MR 0152673 | Zbl 0113.06302
[20] A calculus for meromorphic currents, J. Reine Angew. Math., Volume 392 (1988), pp. 37-56 | Article | MR 965056 | Zbl 0645.32007
[21] Residue currents of the Bochner-Martinelli type, Publ. Mat., Volume 44 (2000) no. 1, pp. 85-117 | Article | MR 1775747 | Zbl 0964.32003
[22] Explicit Serre duality on complex spaces, Adv. Math., Volume 305 (2017), pp. 1320-1355 | Article | MR 3570160 | Zbl 1359.32009
[23] Holomorphic forms, the -equation, and duality on a reduced complex space (http://arxiv.org/abs/1506.07842)
[24] A Briançon-Skoda-type result for a non-reduced analytic space (to appear in J. Reine Angew. Math.)
[25] A residue calculus approach to the uniform Artin-Rees lemma, Isr. J. Math., Volume 196 (2013) no. 1, pp. 33-50 | Article | MR 3096582 | Zbl 1280.32003
[26] Products of residue currents of Cauchy-Fantappiè-Leray type, Ark. Mat., Volume 45 (2007) no. 1, pp. 157-178 | Article | Zbl 1152.32006