On some classical space-time groups and their “SU6 generalizations”
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 2 (1965) no. 4, pp. 327-353.
@article{AIHPA_1965__2_4_327_0,
     author = {Bacry, H.},
     title = {On some classical space-time groups and their {{\textquotedblleft}SU6} generalizations{\textquotedblright}},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {327--353},
     publisher = {Gauthier-Villars},
     volume = {2},
     number = {4},
     year = {1965},
     mrnumber = {192842},
     zbl = {0138.46203},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1965__2_4_327_0/}
}
TY  - JOUR
AU  - Bacry, H.
TI  - On some classical space-time groups and their “SU6 generalizations”
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1965
SP  - 327
EP  - 353
VL  - 2
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1965__2_4_327_0/
LA  - en
ID  - AIHPA_1965__2_4_327_0
ER  - 
%0 Journal Article
%A Bacry, H.
%T On some classical space-time groups and their “SU6 generalizations”
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1965
%P 327-353
%V 2
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1965__2_4_327_0/
%G en
%F AIHPA_1965__2_4_327_0
Bacry, H. On some classical space-time groups and their “SU6 generalizations”. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 2 (1965) no. 4, pp. 327-353. http://archive.numdam.org/item/AIHPA_1965__2_4_327_0/

[1] The conformal group was first introduced by H. BATEMAN, Proc. Lond. Math. Soc., 8, 1910, 223 and E. Cunningham, Proc. Lond. Math. Soc., 8, 1910, 77

Invariance of the Maxwell equations leads to the conformal group so far as space time is assumed to be flat. For a more general case, see T. Fulton, F. Rohrlich and L. Witten, Rev. Mod. Phys., 34, 1962, 442. | MR | Zbl

See also J. Wess, Nuovo Cimento, 18, 1960, 1086. | Zbl

[2] B. Sakita, Phys. Rev., 136, 1964, B1756. | MR

F. Gürsey and L.A. Radicati, Phys. Rev. Letters, 13, 1964, 173. | MR

H. Bacry and J. Nuyts, Phys. Letters, 12, 156 and 13, 1964, 359. | MR

[4] Dyads are very convenient in the investigation of the Lorentz group. See, for instance, H. Bacry, Thèse, Annales de Physique, 8, 1963, 197.

J.M. Souriau, Calcul linéaire (Paris, Presses Universitaires, 1960). | MR | Zbl

[6]D. Spelser, Lectures given at the Istanbul Summer School (1962), to be published.

[10] [M. Gell-Mann, Phys. Letters, 8, 1964, 214 and G. Zweig, Cern preprints TH. 401 and 412,1964]. | MR

[11] R.P. Feynman, M. Gell-Mann and G. Zweig in Phys. Rev. Letters (to be published), « The group U(6) x U(6) generated by current components. » | Zbl

[12] M. Gell-Mann, Phys. Rev., 125, 1962, 1067. | MR | Zbl

[14] H. Bacry and J. Nuyts, « Remarks on an enlarged Poincaré group: inhomogeneous SL(6,C) group » (to be published in Nuovo Cimento). | Zbl

[19] See ref. [14] [16]. See also T. Fulton and J. Wess, Phys. Letters, 14, 1965, 57. | Zbl

R. Delburgo, A. Salam and J. Strathdee, « U(12) and broken SU(6) symmetry », « Ü(12) and the baryon form factor », preprints Trieste (January 1965). | MR