@article{AIHPA_1968__8_2_139_0, author = {Manuceau, J.}, title = {$C^\ast $-alg\`ebre de relations de commutation}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {139--161}, publisher = {Gauthier-Villars}, volume = {8}, number = {2}, year = {1968}, mrnumber = {225545}, zbl = {0173.29902}, language = {fr}, url = {http://archive.numdam.org/item/AIHPA_1968__8_2_139_0/} }
TY - JOUR AU - Manuceau, J. TI - $C^\ast $-algèbre de relations de commutation JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1968 SP - 139 EP - 161 VL - 8 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1968__8_2_139_0/ LA - fr ID - AIHPA_1968__8_2_139_0 ER -
Manuceau, J. $C^\ast $-algèbre de relations de commutation. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 8 (1968) no. 2, pp. 139-161. http://archive.numdam.org/item/AIHPA_1968__8_2_139_0/
[1] The C*-algebras of a free boson field. I. Discussion of Basic Facts. Commun. Math. Phys., 1, 1965, 14-18. | MR | Zbl
,[2] Étude de quelques automorphismes de la C*-algèbre du champ de bosons libres. Ann. Inst. Henri Poincaré, 8, 1968, 117-138. | Numdam | MR | Zbl
,[3] Les C*-algèbres et leurs représentations. Gauthier-Villars, 1964, Paris. | MR | Zbl
,[4] Hamiltonian Formalism and the Canonical Commutation Relations in Quantum Field Theory. J. Math. Phys., 1, 1960, 492. | MR | Zbl
,[5] Inductive limit and infinite direct product of operator algebras. Tôhoku Math. J., 7, 1955, 67-86. | MR | Zbl
,[6] Normed Rings. Noordhoff-Groningen, 1959, The Netherlands. | MR | Zbl
,[7] Fondements de l'analyse moderne. Gauthier-Villars, 1963, Paris. | MR | Zbl
,[8] On one-parameter unitary groups in Hilbert space. Annals of Mathematics (2), 33, 1932, 643-648. | MR | Zbl
,[9] A theorem on canonical commutation and anticommutation relations. Commun. Math. Phys., 2, 1966, 223-230. | MR | Zbl
, and ,[10] Introduction à l'électrodynamique quantique. Dunod, 1961, Paris. | MR | Zbl
,[11] Die Eindentigkeit der Schrödingerschen Operators. Math. Ann., 104, 1931, 570. | JFM | Zbl
,