Reduction of the most degenerate unitary irreductible representations of SO 0 (m,n) when restricted to a non-compact rotation subgroup
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 9 (1968) no. 4, pp. 327-355.
@article{AIHPA_1968__9_4_327_0,
     author = {Limi\'c, N. and Niederle, J.},
     title = {Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {327--355},
     publisher = {Gauthier-Villars},
     volume = {9},
     number = {4},
     year = {1968},
     mrnumber = {240240},
     zbl = {0172.27601},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1968__9_4_327_0/}
}
TY  - JOUR
AU  - Limić, N.
AU  - Niederle, J.
TI  - Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1968
SP  - 327
EP  - 355
VL  - 9
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1968__9_4_327_0/
LA  - en
ID  - AIHPA_1968__9_4_327_0
ER  - 
%0 Journal Article
%A Limić, N.
%A Niederle, J.
%T Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1968
%P 327-355
%V 9
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1968__9_4_327_0/
%G en
%F AIHPA_1968__9_4_327_0
Limić, N.; Niederle, J. Reduction of the most degenerate unitary irreductible representations of $SO_0 (m, n)$ when restricted to a non-compact rotation subgroup. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 9 (1968) no. 4, pp. 327-355. http://archive.numdam.org/item/AIHPA_1968__9_4_327_0/

[1] See for example

K. Bardacki, J.M. Cornwall, P.G.O. Freund and B.W. Lee, Phys. Rev. Letters, t. 13, 1964, p. 698; t. 14, 1965, p. 48. | Zbl

A.O. Barut, Phys. Rev., t. 135, 1964, B 839. | MR

P. Budini, C. Fronsdal, Phys. Rev. Letters, t. 14, 1965, p. 968. | MR | Zbl

T. Cook, C.J. Goebel and B. Sakita, Phys. Rev. Letters, t. 15, 1965, p. 35. | MR | Zbl

Y. Dothan, M. Gell-Mann and Y. Neeman, Phys. Letters, t. 17, 1965, p. 148. | MR

M. Flato, D. Sternheimer, J. Math. Phys., t. 7, 1936, p. 1932; Phys. Rev. Letters, t. 15, 1965, p. 939. | Zbl

C. Fronsdal, Proc. of the Third Coral Gables Conference, W. H. Freeman and Co., San Francisco, 1966.

N. Mukunda, R. O'Raifeartaigh and E.C.G. Sudarshan, Phys. Rev. Letters, t. 15, 1965, p. 1041. | MR

Y. Nambu, Relativistic Wave Equations for Particles with Internal Structure and Mass Spectrum, University of Chicago, preprint 1966. | Zbl

Proceedings of the Milwaukee Conference of Non-compact groups in Particle Physics, Y. Chow (editor), W. A. Benjamin and Co., New York, 1966. | Zbl

E.H. Roffmann, Phys. Rev. Letters, t. 16, 1966, p. 210. | MR

G. Rueg, W. Rühl and T.S. Santhanam, The SU(6) Model and its Relativistic Generalizations, CERN report 66/1106-5-Th 709, 1966.

A. Salam, R. Delbourgo and J. Strathdee, Proc. Roy. Soc. (London), t. 284 A, 1965, p. 146. | MR

E.C. Sudarshan, Proc. of the Third Coral Gables Conference, W. H. Freeman and Co., San Francisco, 1966.

[2] H. Joos, Fortschr. d. Phys., t. 10, 1962, p. 65 and Lectures in Theoretical Physics, vol. VII A, p. 132, Boulder, University of Colorado, edited by W. E. Brittin and A. O. Barut, 1965. | MR

L. Sertorio and M. Toller, Nuovo Cimento, t. 33, 1964, p. 413. | MR

M. Toller, Nuovo Cimento, t. 37, 1965, p. 631. | MR

F.T. Hadjioiannou, Nuovo Cimento, t. 44, 1966, p. 185.

J.F. Boyce, J. Math. Phys., t. 8, 1967, p. 675.

[3] M.L. Whippman, J. Math. Phys., t. 6, 1965, p. 1534. | MR | Zbl

A. Navon and J. Patera, J. Math. Phys., t. 8, 1967, p. 489. | MR | Zbl

O. Nachtman, Unitary representation of SO(p, q), SU(p, q) groups. University of Vienna prepreint, 1965.

[4] J. Niederle, J. Math. Phys., t. 8, 1968, p. 1921. | Zbl

[5] N.Z. Evans, J. Math. Phys., t. 8, 1967, p. 170. | Zbl

A. Sciarrino and M. Toller, On the decomposition of the unitary representations of the group SL(2, c) restricted to the subgroup SU(1, 1). Internal report No. 108, Istituto di Fisica « G. Marconi »;, Roma, 1966.

N. Mukunda, Unitary representations of the group SO(2, 1) in an SO(1, 1) basis. Syracuse University preprint 1206-SU-103, Syracuse, 1967. | MR

N. Mukunda, Unitary Representations of the Homogeneous Lorentz Group in an SO(2, 1) basis. Syracuse University preprint 1206-SU-106, Syracuse, 1967.

N. Mukunda, Zero mass representations of the Poincaré group in an SO(3, 1) basis. Syracuse University preprint 1206-SU-107, Syracuse, 1967.

N. Mukunda, Unitary Representations of the Lorentz group: Reduction of the Supplementary Series under a Non-compact Subgroup. Syracuse University preprint 1206-SU-112, Syracuse, 1967. | MR

C. Fronsdal, On the Supplementary Series of Representations of Semi-simple Non-compact Groups. ICTP Internal Report 15/1967, Trieste, 1967.

L. Castell, The Physical Aspects of the Conformal Group SO0(4, 2). ICTP preprint IC/67/66, Trieste, 1967.

[6] R. Raczka, N. Limić, J. Niederle, J. Math. Phys., t. 7, 1966, p. 1861. | MR | Zbl

[7] N. Limić, J. Niederle, R. Raczka, J. Math. Phys., t. 7, 1966, p. 2026. | MR | Zbl

[8] N. Limić, J. Niederle and R. Raczka, J. Math. Phys., t. 8, 1967, p. 1091. | MR

[9] The group G is unimodular if | det AdG(g) | = 1 for all g ∈ G, where AdG(g) is the automorphism of the Lie algebra g of the group G defined by AdG(g): g ∋ X → AdG(g)X = dI(g)eX and I(g) is the inner isomorphism of G onto itself. The group SO0(r, s) is a semi-simple (in fact simple) Lie group, hence unimodular. For the group G = Tm+n-2 s SO0(m - 1, n - 1) we also have | det AdG(g) | = 1, as follows from the following argument. G is a connected group and therefore every neighbourhood U(e) of the identity element e ∈ G generates the whole group G. As G ∋ g → Ad(g) ∈ GL(g) is the homomorphism, it suffices to prove that | det Ad(g) | = 1 for a g ∈ U(e). We choose such U(e) for which a neighbourhood V(o) ∈ g exists such that V(0) ∋ X → exp X ∈ U(e) is the diffeomorphism. Then for every g = exp X ∈ U(e) we have | det Ad (exp X) | = exp { TradX }. In the basis of the Lie algebra of the considered group G, which is the union of the basis of Lie algebras of the groups Tm+n-2 and SO0(m - 1, n - 1), one easily calculates that Tr adX = 0.

[10] A. Weil, L'intégration dans les groupes topologiques et ses applications. Hermann, Paris, 1940. See also S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York and London, 1962. | JFM | Zbl

[11] The Hilbert space h(M) is a Hilbert space vector of which the equivalence classes of complex valued measurable functions f(p) on M such that and the scalar product is defined by Addition of vectors and multiplication of vectors by complex numbers is defined as the corresponding operations with the complex valued functions.

[12] The invariant C2 is a Casimir operator gμνXμXν where gμν is the Cartan metric tensor of the Lie algebra s0(m, n) in a basis X1, X2, ..., X[m+n 2].

[13] Here and elsewhere we use brackets for indices defined as follows:

[14] For instance all UI representations of the group SO0(m, n) m ≥ n ≥ 2 related with three homogeneous spaces M which are classified by the same real number λ ∈ (0, ∞) and the same eigenvalue of the operator P are equivalent.

[15] E.C. Titchmarsh, Eigenfunction expansions, Part I, Clarendon Press, Oxford, 1962. | MR | Zbl

[16] N.J. Vilenkin, Special functions and theory of group representation, NA UKA, Moscow, 1965 (In Russian). | MR