@article{AIHPA_1970__13_2_103_0, author = {Tilgner, Hans}, title = {A class of solvable {Lie} groups and their relation to the canonical formalism}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {103--127}, publisher = {Gauthier-Villars}, volume = {13}, number = {2}, year = {1970}, mrnumber = {277192}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1970__13_2_103_0/} }
TY - JOUR AU - Tilgner, Hans TI - A class of solvable Lie groups and their relation to the canonical formalism JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1970 SP - 103 EP - 127 VL - 13 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1970__13_2_103_0/ LA - en ID - AIHPA_1970__13_2_103_0 ER -
%0 Journal Article %A Tilgner, Hans %T A class of solvable Lie groups and their relation to the canonical formalism %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1970 %P 103-127 %V 13 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1970__13_2_103_0/ %G en %F AIHPA_1970__13_2_103_0
Tilgner, Hans. A class of solvable Lie groups and their relation to the canonical formalism. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 13 (1970) no. 2, pp. 103-127. http://archive.numdam.org/item/AIHPA_1970__13_2_103_0/
[1] Limitable Dynamical Groups in Quantum Mechanics. I. General Theory and a Spinless Model. J. Math. Phys., t. 9, 1968, p. 1638- 1656. | MR | Zbl
et ,et , To appear.
[2] C*-Algebras of a Free Boson Field. Commun. Math. Phys., t. 1, 1965, p. 14-48. | MR | Zbl
,[3] Jordan Algebras and their Applications. University of Minnesota, Minneapolis, 1962. | Zbl
,[4] Differential Geometry and Symmetric Spaces. Academic Press, N. Y., 1962. | MR | Zbl
,[5] Symmetric Spaces. I. Benjamin, N. Y., 1969. | Zbl
,[6] The Exponential Representation of Canonical Matrices. Am. J. Math., t. 61, 1939, p. 897-911. | MR | Zbl
,[7] Invariance in Quantum Mechanics and Group Extensions in Gürsey (ed.) : Group Theoretical Concepts and Methods in Elementary Particle Physics. Gordon and Breach, N. Y., 1964. | MR | Zbl
,[8] The Representations of the Oscillator Group. Commun. Math. Phys., t. 4, 1967, p. 217-236. | MR | Zbl
,[9] Lie Algebras. Interscience, N. Y., 1961. | MR | Zbl
,[10] Lie Groups in Quantum Mechanics. Springer, Lecture, Notes in Mathematics, 52, Berlin, 1968. | Zbl
,[11] Séminaire Sophus Lie, E. N. S., 1954. Théorie des Algèbres de Lie, Topologie des Groupes de Lie. | Zbl
[12] Quantized Differential Forms. Topology, t. 7, 1968, p. 147-172. | MR | Zbl
,[13] Algebra. Addison-Wesley, Reading, Mass., 1965. | MR | Zbl
,[14] Dynamical Group of the Anisotropic Harmonic Oscillator. Nuovo Cimento, t. 43 A, 1966, p. 1203-1207.
et ,[15] Square Root Extraction for Anticommuting Spinors. Soviet. Math. Dokl., t. 8, 1967, p. 32-34. | Zbl
,[16] Lie Groups for Physicists. Benjamin, N. Y., 1966. | MR | Zbl
,[17] Theory of Lie Groups. I. Princeton, 1964.
,