A class of solvable Lie groups and their relation to the canonical formalism
Annales de l'I.H.P. Physique théorique, Volume 13 (1970) no. 2, p. 103-127
@article{AIHPA_1970__13_2_103_0,
     author = {Tilgner, Hans},
     title = {A class of solvable Lie groups and their relation to the canonical formalism},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {13},
     number = {2},
     year = {1970},
     pages = {103-127},
     mrnumber = {277192},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1970__13_2_103_0}
}
Tilgner, Hans. A class of solvable Lie groups and their relation to the canonical formalism. Annales de l'I.H.P. Physique théorique, Volume 13 (1970) no. 2, pp. 103-127. http://www.numdam.org/item/AIHPA_1970__13_2_103_0/

[1] H.D. Döbner et O. Melsheimer, Limitable Dynamical Groups in Quantum Mechanics. I. General Theory and a Spinless Model. J. Math. Phys., t. 9, 1968, p. 1638- 1656. | MR 237145 | Zbl 0162.58702

H.D. Döbner et T. Palev, To appear.

[2] D. Kastler, C*-Algebras of a Free Boson Field. Commun. Math. Phys., t. 1, 1965, p. 14-48. | MR 193983 | Zbl 0137.45601

[3] M. Köcher, Jordan Algebras and their Applications. University of Minnesota, Minneapolis, 1962. | Zbl 0128.03101

[4] S. Helgason, Differential Geometry and Symmetric Spaces. Academic Press, N. Y., 1962. | MR 145455 | Zbl 0111.18101

[5] O. Loos, Symmetric Spaces. I. Benjamin, N. Y., 1969. | Zbl 0175.48601

[6] J. Williamson, The Exponential Representation of Canonical Matrices. Am. J. Math., t. 61, 1939, p. 897-911. | MR 220 | Zbl 0022.10007

[7] L. Michel, Invariance in Quantum Mechanics and Group Extensions in Gürsey (ed.) : Group Theoretical Concepts and Methods in Elementary Particle Physics. Gordon and Breach, N. Y., 1964. | MR 171551 | Zbl 0151.34305

[8] R.F. Streater, The Representations of the Oscillator Group. Commun. Math. Phys., t. 4, 1967, p. 217-236. | MR 207908 | Zbl 0155.32503

[9] N. Jacobson, Lie Algebras. Interscience, N. Y., 1961. | MR 143793 | Zbl 0121.27504

[10] D. Simms, Lie Groups in Quantum Mechanics. Springer, Lecture, Notes in Mathematics, 52, Berlin, 1968. | Zbl 0161.24002

[11] Séminaire Sophus Lie, E. N. S., 1954. Théorie des Algèbres de Lie, Topologie des Groupes de Lie. | Zbl 0068.02102

[12] I. Segal, Quantized Differential Forms. Topology, t. 7, 1968, p. 147-172. | MR 232790 | Zbl 0162.40602

[13] S. Lang, Algebra. Addison-Wesley, Reading, Mass., 1965. | MR 197234 | Zbl 0193.34701

[14] Duimio et Zambotti, Dynamical Group of the Anisotropic Harmonic Oscillator. Nuovo Cimento, t. 43 A, 1966, p. 1203-1207.

[15] S.S. Sannikov, Square Root Extraction for Anticommuting Spinors. Soviet. Math. Dokl., t. 8, 1967, p. 32-34. | Zbl 0244.20051

[16] R. Hermann, Lie Groups for Physicists. Benjamin, N. Y., 1966. | MR 213463 | Zbl 0135.06901

[17] C. Chevalley, Theory of Lie Groups. I. Princeton, 1964.