@article{AIHPA_1971__14_2_179_0, author = {Tilgner, Hans}, title = {A class of {Lie} and {Jordan} algebras realized by means of the canonical commutation relations}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {179--188}, publisher = {Gauthier-Villars}, volume = {14}, number = {2}, year = {1971}, mrnumber = {289594}, zbl = {0211.35604}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1971__14_2_179_0/} }
TY - JOUR AU - Tilgner, Hans TI - A class of Lie and Jordan algebras realized by means of the canonical commutation relations JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1971 SP - 179 EP - 188 VL - 14 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1971__14_2_179_0/ LA - en ID - AIHPA_1971__14_2_179_0 ER -
%0 Journal Article %A Tilgner, Hans %T A class of Lie and Jordan algebras realized by means of the canonical commutation relations %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1971 %P 179-188 %V 14 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1971__14_2_179_0/ %G en %F AIHPA_1971__14_2_179_0
Tilgner, Hans. A class of Lie and Jordan algebras realized by means of the canonical commutation relations. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 14 (1971) no. 2, pp. 179-188. http://archive.numdam.org/item/AIHPA_1971__14_2_179_0/
[1] A class of solvable Lie groups and their relation to the canonical formalism. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. | Numdam | MR
,[2] A spectrum generating nilpotent group for the relativistic free particle. Ann. Inst. H. Poincaré, Section A : Physique théorique, t. 13, n° 2, 1970. | Numdam | MR
,[3] Quantized differential forms. Topology, t. 7, 1968, p. 147-172. | MR | Zbl
,[4] The exponential representation of canonical matrices. Am. J. Math., t. 61, 1939, p. 897-911. | MR | Zbl
,[5] Jordan algebras and their applications. University of Minnesota notes, Minneapolis, 1962. | Zbl
,[6] Gruppen und Lie-Algebren von rationalen Funktionen. Math. Z., t. 109, 1969, p. 349-392. | MR | Zbl
,[7] An elementary approach to bounded symmetric domains. Rice University, Houston, Texas, 1969. | MR | Zbl
,[8] On angular momentum, In Quantum theory of angular momentum. Edited by L. C. Biedenharn, H. van Dam, Academic Press, New York, 1965. | MR
,[9] Representation of group generators by boson or fermion operators. Application to spin perturbation. Helv. Phys. Acta, t. 39, 1966, p. 463-465.
,[10] Realizations of Lie algebras by rational functions of canonical variables. In « Proceedings of the IX. Internationale Universitätswochen für Kernphysik, 1970 in Schladming, Austria ». Springer Wien, to appear, 1970. | Zbl
and ,[11] Symmetric spaces, I : General theory. Benjamin New York, 1969. | MR | Zbl
,[12] Symmetric spaces, II : Compact spaces and classification. Benjamin, New York, 1969. | MR | Zbl
,[13] Algebra. Addison-Wesley, Reading Mass, 1965. | MR | Zbl
,[14] The construction and study of certain important algebras. The International Society of Japan, Tokio, 1955. | MR | Zbl
,