On a differential equation approach to quantum field theory : scattering for Thirring's model
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 16 (1972) no. 4, pp. 265-277.
@article{AIHPA_1972__16_4_265_0,
     author = {de Mottoni, Piero},
     title = {On a differential equation approach to quantum field theory : scattering for {Thirring's} model},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {265--277},
     publisher = {Gauthier-Villars},
     volume = {16},
     number = {4},
     year = {1972},
     mrnumber = {323267},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1972__16_4_265_0/}
}
TY  - JOUR
AU  - de Mottoni, Piero
TI  - On a differential equation approach to quantum field theory : scattering for Thirring's model
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1972
SP  - 265
EP  - 277
VL  - 16
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1972__16_4_265_0/
LA  - en
ID  - AIHPA_1972__16_4_265_0
ER  - 
%0 Journal Article
%A de Mottoni, Piero
%T On a differential equation approach to quantum field theory : scattering for Thirring's model
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1972
%P 265-277
%V 16
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1972__16_4_265_0/
%G en
%F AIHPA_1972__16_4_265_0
de Mottoni, Piero. On a differential equation approach to quantum field theory : scattering for Thirring's model. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 16 (1972) no. 4, pp. 265-277. http://archive.numdam.org/item/AIHPA_1972__16_4_265_0/

[1] J. Glimm and A. Jaffe, A λ Φ4 theory without cutoffs : I (Phys, Rev., vol. 176, 1968, p. 1945-1951). Id., The (λ Φ4)2 quantum field theory without cutoffs : II. The field operators and the approximate vaccuum (Ann. of Math., vol. 91, 1970, p. 362-401). Id., The (λ Φ4)2 quantum theory without cutoffs : III. The physical vacuum (Acta Mathem., vol. 125, 1970, p. 203-267).

[2] I. Segal, Non-linear semi-groups (Ann. of Math., vol. 78, 1963, p. 339-364). Id., Non-linear partial differential equations in quantum field theory (Symp. Appl. Math., vol. 17, 1965, p. 210-226). Id., Notes towards the construction of non-linear relativistic quantum fields, I (Proc. N. A. S., vol. 57, 1967, p. 1178-1183). | MR | Zbl

[3] E. Salusti and A. Tesei, On a semi-group approach to quantum field equations (Nuovo Cimento, vol. 2 A, 1971, p. 122-138). | MR

[4] P. De Mottoni and E. Salusti, On a differential equation approach to quantum field theory : causality property for the solutions of Thirring's model (Ann. Inst. Henri Poincaré, t. A 15, 1971, p. 363-372). | Numdam | Zbl

[5] W.A. Strauss, Decay and Asymptotics for □u = F (u) (J. Funct. Anal., vol. 2, 1968, p. 409-457). | MR | Zbl

[6] V. Glaser, An explicit solution of the Thirring Model (Nuovo Cimento, vol. 9, 1958, p. 990-1006). | MR | Zbl

[7] F. Browder, Non-linear equations of evolution (Ann. of Math., vol. 80, 1964, p. 485-523). | MR | Zbl

[8] J.M. Jauch, Theory of the scattering operator (Helv. Phys. Acta, vol. 31, 1958, p. 127-158). | MR | Zbl

[9] T. Kato, Perturbation theory for linear operators, Springer Verlag, Berlin-Heidelberg, 1966. | MR | Zbl

[10] E. Prugovečki, Quantum mechanics in Hilbert space, Academic Press, New York and London, 1971. | MR | Zbl

[11] P.D. Lax and R.S. Phillips, Scattering Theory, Academic Press, New York and London, 1967. | Zbl

[12] A.R. Brodsky, The existence of wave operators for non-linear equations (Pacif. J. Math., vol. 19, 1966, p. 1-12). | MR | Zbl

[13] G. Da Prato, Somme d'applications non linéaires dans des cônes et équations d'évolutions dans des espaces d'opérateurs (J. Math. pures et appl., t. 49, 1970, p. 289-348). | MR | Zbl

[14] M. Iannelli, A note on some non-linear non-contraction semigroups (Boll. U. M. I., vol. 6, 1970, p. 1015-1025). | MR | Zbl

[15] W.E. Thirring, A soluble relativistic field theory (Ann. Phys., vol. 3, 1958, p. 91-112). | MR | Zbl