@article{AIHPA_1974__20_3_269_0, author = {Droz-Vincent, Ph.}, title = {Local existence for finitely predictive two-body interactions}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {269--277}, publisher = {Gauthier-Villars}, volume = {20}, number = {3}, year = {1974}, mrnumber = {386575}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1974__20_3_269_0/} }
TY - JOUR AU - Droz-Vincent, Ph. TI - Local existence for finitely predictive two-body interactions JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1974 SP - 269 EP - 277 VL - 20 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1974__20_3_269_0/ LA - en ID - AIHPA_1974__20_3_269_0 ER -
%0 Journal Article %A Droz-Vincent, Ph. %T Local existence for finitely predictive two-body interactions %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1974 %P 269-277 %V 20 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1974__20_3_269_0/ %G en %F AIHPA_1974__20_3_269_0
Droz-Vincent, Ph. Local existence for finitely predictive two-body interactions. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 20 (1974) no. 3, pp. 269-277. http://archive.numdam.org/item/AIHPA_1974__20_3_269_0/
[1] J. Math. Phys., t. 4, 1963, p. 1470; Phys. Rev., t. 142, 1966, p. 817. | MR | Zbl
,[2] J. Math. Phys., t. 8, 1967, p. 201.
,[3] J. Math. Phys., t. 6, 1965, p. 1218. | MR
,[4] Lett. Nuovo Cimento, t. I, vol. I, 1969, p. 839 ; Physica Scripta, Vol. 2, 1970, p. 129. | Zbl
,[5] A compact sketch of this problem was outlined in C. R. Acad. Sc. Paris, t. 275 A, 1972, p. 1263.
,[6] To be sure that the « width » of the neighborhood is always > some positive ∈, one must replace Σ- (resp. Σ-*) by a compact part of it.
[7] Phys. Rev., t. 178, 1969, p. 2051. | MR
,[8] Phys. Rev., t. 131, 1963, p. 2762. | Zbl
,[9] Phys. Rev., D 7, 1973, p. 1099 (see also , , to be published).
, , ,[10] J. Math. Phys., t. 11, n° 9, 1970, p. 2704.
, ,[11] Ann. Inst. Henri Poincaré, Vol. XIV, n° 1, 1971, p. 69. | Numdam
,