Thermodynamic equivalence of spin systems
Annales de l'I.H.P. Physique théorique, Volume 22 (1975) no. 2, p. 143-158
@article{AIHPA_1975__22_2_143_0,
     author = {Beltman, J. M.},
     title = {Thermodynamic equivalence of spin systems},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {22},
     number = {2},
     year = {1975},
     pages = {143-158},
     mrnumber = {384022},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1975__22_2_143_0}
}
Beltman, J. M. Thermodynamic equivalence of spin systems. Annales de l'I.H.P. Physique théorique, Volume 22 (1975) no. 2, pp. 143-158. http://www.numdam.org/item/AIHPA_1975__22_2_143_0/

[1] This remark is also in Ruelle's book, chapter 7. Ruelle, Statistical Mechanics, W. A. Benjamin, Inc., 1969.

[2] Hocking and Young, Topology, Addison-Wesley Publishing Company. See chapter 2. | Zbl 0135.22701

[3] C.J. Preston, Gibbs states on countable sets, Lincoln College Oxford. Preston's definition of Gibbs state goes back to Dobrushin.

[4] D.S. Ornstein, Adv. Math., t. 4, 1970, p. 337-352. | MR 257322 | Zbl 0197.33502

D.S. Ornstein, Adv. Math., t. 10, 1973, number 1.

[5] O.P. Lossers, J.H. Van Lint and W. Nuij, Finitely generated bijections of (0,1)z. T. H.-report 74-WSK-01. Technological University Eindhoven. The Netherlands. | Zbl 0293.05130

[6] After finishing the present paper we were acquainted with the investigations of F1 by HEDLUND. G.A. Hedlund, Endomorphisms and Automorphisms of the Shift Dynamical System, Math. Systems Theory, t. 3, 1969, p. 320-375. | Zbl 0182.56901

Other papers are: M. Sears, The automorphisms of the shift dynamical system are relatively sparse, Math. Systems Theory, t. 5, 1971, p. 228-231. | MR 307211 | Zbl 0221.54040

J.P. Ryan, The shift and Commutativity, Math. Systems Theory, t. 6, 1972, p. 82-85. | MR 305376 | Zbl 0227.54037

E.M. Coven and M.E. Paul, Endomorphisms of irreducible subshifts of finite type. To appear in Math. Systems Theory. | MR 383378 | Zbl 0309.54032