@article{AIHPA_1981__34_3_309_0, author = {Br\"uning, Erwin}, title = {The $n$-field-irreducible part of a $n$-point functional}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {309--328}, publisher = {Gauthier-Villars}, volume = {34}, number = {3}, year = {1981}, mrnumber = {612220}, zbl = {0476.46059}, language = {en}, url = {http://archive.numdam.org/item/AIHPA_1981__34_3_309_0/} }
TY - JOUR AU - Brüning, Erwin TI - The $n$-field-irreducible part of a $n$-point functional JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1981 SP - 309 EP - 328 VL - 34 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/item/AIHPA_1981__34_3_309_0/ LA - en ID - AIHPA_1981__34_3_309_0 ER -
%0 Journal Article %A Brüning, Erwin %T The $n$-field-irreducible part of a $n$-point functional %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1981 %P 309-328 %V 34 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/item/AIHPA_1981__34_3_309_0/ %G en %F AIHPA_1981__34_3_309_0
Brüning, Erwin. The $n$-field-irreducible part of a $n$-point functional. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 34 (1981) no. 3, pp. 309-328. http://archive.numdam.org/item/AIHPA_1981__34_3_309_0/
[1] Phys. Rev., t. 112, 1958, p. 669. | MR | Zbl
,[2] The general theory of quantized fields. Providence, R. I. : American Mathematical Society, 1965. | MR | Zbl
,[3] On Jacobi-fields; BI-TP, june 1979, p. 25-79 ; to appear in the Proceedings of the Colloquim on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, june 1979, p. 24-30, Esztergom. | MR
,[4] Analyticity properties and many-particle structure in general quantum field theory I, II, III ; Comm. math. Phys., t. 36, 1974, p. 185-225 ; t. 43, 1975, p. 279-309; t. 54, 1977, p. 33-62.
, ,[5] Einführung in die Theorie der lokalkonvexen Räume. Berlin, Heidelberg, New York, Springer, 1968. | MR | Zbl
, ,[6] On the Characterization of Relativistic Quantum Field Theories in Terms of Finitely Many Vacuum Expectation Values II ; Comm. math. Phys., t. 58, 1978, p. 167-194. | MR
,[7] General Properties of the n-Point-Functionals in Local Quantum Field Theory; in: Structural Analysis of Collision Amplitudes, Les Houches, 1975, june Institute; Ed. : R. Balian, D. Iagolnitzer, North Holland, 1976. | MR
, , ,[8] International Symposium on Mathematical Problems in Thenetical Physics, Kyoto, Springer, Lecture Notes in Physics, t. 39, 1975. | MR
, , in