Asymptotic completeness for the impact parameter approximation to three particle scattering
Annales de l'I.H.P. Physique théorique, Volume 36 (1982) no. 1, p. 19-40
@article{AIHPA_1982__36_1_19_0,
     author = {Hagedorn, George A.},
     title = {Asymptotic completeness for the impact parameter approximation to three particle scattering},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {36},
     number = {1},
     year = {1982},
     pages = {19-40},
     zbl = {0482.47003},
     mrnumber = {653016},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1982__36_1_19_0}
}
Hagedorn, George A. Asymptotic completeness for the impact parameter approximation to three particle scattering. Annales de l'I.H.P. Physique théorique, Volume 36 (1982) no. 1, pp. 19-40. http://www.numdam.org/item/AIHPA_1982__36_1_19_0/

[1] S. Agmon, Spectral Properties of Schrödinger Operators and Scattering Theory. Ann. Scuola Norm. Sup. Pisa, t. 2, 1975, p. 151-218. | Numdam | MR 397194 | Zbl 0315.47007

[2] L.D. Faddeev, Mathematical Aspects of the Three-body Problem in the Quantum Scattering Theory Israel Program for Scientific Translations, Jérusalem, 1965. | MR 221828 | Zbl 0131.43504

[3] J. Ginibre, M. Moulin, Hilbert Space Approach to the Quantum Mechanical Three Body Problem, Ann. Inst. H. Poincaré, Sect. A, 21, 1974, p. 97-145. | Numdam | MR 368656 | Zbl 0311.47003

[4] R.R. Goldberg, Fourier Transforms, London, Cambridge, University, Presse, 1962. | MR 120501 | Zbl 0095.08601

[5] G.A. Hagedorn, Asymptotic Completeness for Classes of Two, Three, and Four Particle Schrödinger Operators. Trans. Amer. Math. Soc., t. 258, 1980, p. 1-75. | MR 554318 | Zbl 0428.47004

[6] G.A. Hagedorn, Born Series for (2 Cluster) → (2 Cluster) Scattering of Two, Three, and Four Particle Schrödinger Operators. Comm. Math. Phys., t. 66, 1979, p. 77-94. | MR 530916 | Zbl 0418.47003

[7] J.S. Howland, Stationary Scattering Theory and Time-dependent Hamiltonians. Math. Ann., t. 207, 1974, p. 315-335. | MR 346559 | Zbl 0261.35067

[8] J.S. Howland, Abstract Stationary Theory of Multichannel Scattering. J. Functional Analysis, t. 22, 1976, p. 250-282. | MR 461175 | Zbl 0327.47004

[9] R. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloquium Publication, Providence, RI, 1934. | JFM 60.0345.02 | MR 1451142 | Zbl 0011.01601

[10] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. II, Fourier Analysis, Self-adjointness, New York, London, Academic Press, 1975. | Zbl 0308.47002

[11] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Analysis of Operators, New York, London, Academic press, 1978. | Zbl 0401.47001

[12] R. Shakeshaft, L. Spruch, Mechanisms for Charge Transfer (or the Capture of any Light Particle) at Asymptotically High impact Velocities. Rev. Mod. Phys., t. 51, 1979, p. 369-406.

[13] C.S. Shastri, A.K. Rajagopal, J. Callaway, Coulomb T-Matrix and the Proton-Hydrogen Charge Exchange., Phys. Rev., t. A6, 1972, p. 268-278.

[14] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University, Press, 1971. | MR 455975 | Zbl 0232.47053

[15] B. Simon, Geometric Methods in Multiparticle Quantum Systems. Comm. Math. Phys., t. 55, 1977, p. 259-274. | MR 496073 | Zbl 0413.47008

[16] L.E. Thomas, Asymptotic Completeness in Two- and Three-Particle Quantum Mechanical Scattering. Ann. Phys., t. 90, 1975, p. 127-165. | MR 424082

[17] S. Weinberg, Systematic Solution of Multiparticle Scattering Problems. Phys. Rev., t. B133, 1964, p. 232-256. | MR 165883

[18] K. Yajima, A Multi-Channel Scattering Theory for some Time Dependent Hamiltonians, Charge Transfer Problem. Comm. Math. Phys., t. 75, 1980, p. 153-178. | MR 582506 | Zbl 0437.47008

[19] K. Yosida, Functional Analysis, Berlin, Heidelberg, New York, Springer Verlag, 1968. | MR 617913