On -d 2 dx 2 +V where V has infinitely many “bumps”
Annales de l'I.H.P. Physique théorique, Volume 38 (1983) no. 1, pp. 7-13.
@article{AIHPA_1983__38_1_7_0,
     author = {Klaus, M.},
     title = {On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many {\textquotedblleft}bumps{\textquotedblright}},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {7--13},
     publisher = {Gauthier-Villars},
     volume = {38},
     number = {1},
     year = {1983},
     mrnumber = {700696},
     zbl = {0527.47032},
     language = {en},
     url = {http://archive.numdam.org/item/AIHPA_1983__38_1_7_0/}
}
TY  - JOUR
AU  - Klaus, M.
TI  - On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many “bumps”
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1983
SP  - 7
EP  - 13
VL  - 38
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/item/AIHPA_1983__38_1_7_0/
LA  - en
ID  - AIHPA_1983__38_1_7_0
ER  - 
%0 Journal Article
%A Klaus, M.
%T On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many “bumps”
%J Annales de l'I.H.P. Physique théorique
%D 1983
%P 7-13
%V 38
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/item/AIHPA_1983__38_1_7_0/
%G en
%F AIHPA_1983__38_1_7_0
Klaus, M. On $- \frac{d^2}{dx^2} + V$ where $V$ has infinitely many “bumps”. Annales de l'I.H.P. Physique théorique, Volume 38 (1983) no. 1, pp. 7-13. http://archive.numdam.org/item/AIHPA_1983__38_1_7_0/

[1] J.D. Morgan Iii, I. Op. Theory, t. 1, 1979, p. 109-115. | MR | Zbl

[2] M. Reed, B. Simon, Methods of Modern Mathematical Physics, t. II, Academic Press, 1975. | Zbl

[3] B. Simon, Quantum Mechanics for Hamiltonians defined as Quadratic Forms, Princeton Univ. Press, 1971. | MR | Zbl

[4] D. Pearson, Comm. Math. Phys., t. 60, 1978, p. 13-36. | MR | Zbl

[5] M. Reed, B. Simon, Methods of Modern Mathematical Physics, t. IV, Academic Press, 1978. | Zbl

[6] T. Kato, Perturbation theory for linear operators, Second Ed., Springer, 1976. | MR | Zbl

[7] P.A. Deift, Duke Math. J., t. 45, 1978, p. 267-310. | MR | Zbl